Dosimetry Validation Study for Automated Head and Neck Cancer Organs at Risk Segmentation Using Stratified Learning and Neural Architecture Search

被引:0
|
作者
Ge, J. [1 ]
Guo, D. [2 ]
Ye, X. [3 ]
Song, Y. [1 ]
Hua, X. [4 ]
Lu, L. [2 ]
Lin, C. Y. [5 ,6 ]
Jin, D. [2 ]
Ho, T. Y. [7 ]
机构
[1] Zhejiang Univ, Sch Med, Affiliated Hosp 1, Dept Radiat Oncol, Hangzhou, Peoples R China
[2] Alibaba Grp USA Inc, New York, NY USA
[3] Zhejiang Univ, Sch Med, Affiliated Hosp 1, Dept Radiat Oncol, Hangzhou, Peoples R China
[4] Alibaba Grp Hangzhou Inc, Hangzhou, Peoples R China
[5] Chang Gung Mem Hosp, Dept Radiat Oncol, Taoyuan, Taiwan
[6] Chang Gung Mem Hosp, Proton Ctr, Taoyuan, Taiwan
[7] Chang Gung Mem Hosp, Dept Nucl Med, Taoyuan, Taiwan
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
3309
引用
收藏
页码:E583 / E583
页数:1
相关论文
共 50 条
  • [21] Automatic segmentation of Organs at Risk in Head and Neck cancer patients from CT and MRI scans
    Quetin, Sebastien
    Heschl, Andrew
    Murillo, Mauricio
    Enger, Shirin A.
    Maleki, Farhad
    MEDICAL PHYSICS, 2024, 51 (08) : 5834 - 5835
  • [22] Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer
    Kosmin, M.
    Ledsam, J.
    Romera-Paredes, B.
    Mendes, R.
    Moinuddin, S.
    de Souza, D.
    Gunn, L.
    Kelly, C.
    Hughes, C. O.
    Karthikesalingam, A.
    Nutting, C.
    Sharma, R. A.
    RADIOTHERAPY AND ONCOLOGY, 2019, 135 : 130 - 140
  • [23] Validation of IMRT treatments in head and neck cancer through a European multicentric dosimetry study
    Tomsej, M
    Marchesi, V
    Aletti, P
    RADIOTHERAPY AND ONCOLOGY, 2005, 76 : S40 - S40
  • [24] Deep learning auto-segmentation and automated treatment planning for trismus risk reduction in head and neck cancer radiotherapy
    Thor, Maria
    Iyer, Aditi
    Jiang, Jue
    Apte, Aditya
    Veeraraghavan, Harini
    Allgood, Natasha B.
    Kouri, Jennifer A.
    Zhou, Ying
    LoCastro, Eve
    Elguindi, Sharif
    Hong, Linda
    Hunt, Margie
    Cervino, Laura
    Aristophanous, Michalis
    Zarepisheh, Masoud
    Deasy, Joseph O.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2021, 19 : 96 - 101
  • [25] Clinical Evaluation of Deep Learning Based Auto Segmentation (DLAS) of Organs at Risk in the Head and Neck Region
    Huang, S.
    Ackerman, C.
    Johnson, C.
    Tsai, P.
    Hu, L.
    Xiong, W.
    Apinorasethkul, C.
    Yu, G.
    Zhai, H.
    Press, R. H.
    Lin, H.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [26] Evaluation of Intra-Observer Variation for Deep Learning Generated Head and Neck Organs at Risk Segmentation
    Ge, J.
    Ye, X.
    Guo, D.
    Song, Y.
    Hua, X.
    Lu, L.
    Lin, C. Y.
    Jin, D.
    Ho, T. Y.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E477 - E477
  • [27] Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation
    Daisne, Jean-Francois
    Blumhofer, Andreas
    RADIATION ONCOLOGY, 2013, 8
  • [28] Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation
    Jean-François Daisne
    Andreas Blumhofer
    Radiation Oncology, 8
  • [29] Deep Learning for Automated Elective Lymph Node Level Segmentation for Head and Neck Cancer Radiotherapy
    Strijbis, Victor I. J.
    Dahele, Max
    Gurney-Champion, Oliver J.
    Blom, Gerrit J.
    Vergeer, Marije R.
    Slotman, Berend J.
    Verbakel, Wilko F. A. R.
    CANCERS, 2022, 14 (22)
  • [30] Automated delineation of head and neck organs at risk using synthetic MRI-aided mask scoring regional convolutional neural network
    Dai, Xianjin
    Lei, Yang
    Wang, Tonghe
    Zhou, Jun
    Roper, Justin
    McDonald, Mark
    Beitler, Jonathan J.
    Curran, Walter J.
    Liu, Tian
    Yang, Xiaofeng
    MEDICAL PHYSICS, 2021, 48 (10) : 5862 - 5873