An optimal Steffensen-type family for solving nonlinear equations

被引:72
|
作者
Zheng, Quan [1 ]
Li, Jingya [1 ]
Huang, Fengxi [1 ]
机构
[1] N China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
关键词
Nonlinear equation; Newton's method; Steffensen's method; Derivative free; Optimal convergence;
D O I
10.1016/j.amc.2011.04.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a general family of Steffensen-type methods with optimal order of convergence for solving nonlinear equations is constructed by using Newton's iteration for the direct Newtonian interpolation. It satisfies the conjecture proposed by Kung and Traub [H. T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Math. 21 (1974) 634-651] that an iterative method based on m evaluations per iteration without memory would arrive at the optimal convergence of order 2(m-1). Its error equations and asymptotic convergence constants are obtained. Finally, it is compared with the related methods for solving nonlinear equations in the numerical examples. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:9592 / 9597
页数:6
相关论文
共 50 条
  • [41] A study of optimization for Steffensen-type methods with frozen divided differences
    Ezquerro J.A.
    Grau-Sánchez M.
    Hernández-Verón M.A.
    Noguera M.
    SeMA Journal, 2015, 70 (1) : 23 - 46
  • [42] Ball convergence for Steffensen-type fourth-order methods
    Argyros, Ioannis K.
    George, Santhosh
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2015, 3 (04): : 37 - 42
  • [43] GENERALIZED STEFFENSEN-TYPE INEQUALITIES BY ABEL-GONTSCHAROFF POLYNOMIAL
    Fahad, Asfand
    Pecaric, Josip
    JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 10 (04): : 11 - 25
  • [44] A family of Newton-type methods for solving nonlinear equations
    Salkuyeh, Davod Khojasteh
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (03) : 411 - 419
  • [45] A Family of Newton Type Iterative Methods for Solving Nonlinear Equations
    Wang, Xiaofeng
    Qin, Yuping
    Qian, Weiyi
    Zhang, Sheng
    Fan, Xiaodong
    ALGORITHMS, 2015, 8 (03): : 786 - 798
  • [46] Some new weighted eighth-order variants of Steffensen-King’s type family for solving nonlinear equations and its dynamics
    Kanwar V.
    Bala R.
    Kansal M.
    SeMA Journal, 2017, 74 (1) : 75 - 90
  • [47] On a Moser-Steffensen Type Method for Nonlinear Systems of Equations
    Amat, S.
    Grau-Sanchez, M.
    Hernandez-Veron, M. A.
    Rubio, M. J.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4109 - 4128
  • [48] An optimized Steffensen-type iterative method with memory associated with annuity calculation
    Fuad W. Khdhr
    Fazlollah Soleymani
    Rostam K. Saeed
    Ali Akgül
    The European Physical Journal Plus, 134
  • [49] A variety of dynamic α-conformable Steffensen-type inequality on a time scale measure space
    El-Deeb, Ahmed A.
    Moaaz, Osama
    Baleanu, Dumitru
    Askar, Sameh S.
    AIMS MATHEMATICS, 2022, 7 (06): : 11382 - 11398
  • [50] A composite third order Newton-Steffensen method for solving nonlinear equations
    Sharma, JR
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (01) : 242 - 246