An optimal Steffensen-type family for solving nonlinear equations

被引:72
|
作者
Zheng, Quan [1 ]
Li, Jingya [1 ]
Huang, Fengxi [1 ]
机构
[1] N China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
关键词
Nonlinear equation; Newton's method; Steffensen's method; Derivative free; Optimal convergence;
D O I
10.1016/j.amc.2011.04.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a general family of Steffensen-type methods with optimal order of convergence for solving nonlinear equations is constructed by using Newton's iteration for the direct Newtonian interpolation. It satisfies the conjecture proposed by Kung and Traub [H. T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Math. 21 (1974) 634-651] that an iterative method based on m evaluations per iteration without memory would arrive at the optimal convergence of order 2(m-1). Its error equations and asymptotic convergence constants are obtained. Finally, it is compared with the related methods for solving nonlinear equations in the numerical examples. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:9592 / 9597
页数:6
相关论文
共 50 条
  • [21] A fractional Traub-Steffensen-type method for solving nonlinear equations
    Singh, Harmandeep
    Sharma, Janak Raj
    NUMERICAL ALGORITHMS, 2024, 95 (03) : 1103 - 1126
  • [22] A fractional Traub-Steffensen-type method for solving nonlinear equations
    Harmandeep Singh
    Janak Raj Sharma
    Numerical Algorithms, 2024, 95 : 1103 - 1126
  • [23] On an Inverse Free Steffensen-Type Method for the Approximation of Stiff Differential Equations
    Amat, Sergio
    Busquier, Sonia
    Grau-Sanchez, Miquel
    Hernandez-Veron, M. A.
    Rubio, M. J.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (02) : 119 - 133
  • [24] BILATERAL APPROXIMATIONS OF SOLUTIONS OF EQUATIONS BY ORDER THREE STEFFENSEN-TYPE METHODS
    Pavaloiu, Ion
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2006, 51 (03): : 105 - 114
  • [25] A STEFFENSEN-TYPE METHOD FOR COMPUTING A ROOT
    GAREY, LE
    SHAW, RE
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1985, 18 (02) : 185 - 190
  • [26] Efficient Eighth-order Steffensen Type Method for Solving Nonlinear Equations
    Wang, Xiaofeng
    2015 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND INTELLIGENT CONTROL (ISIC 2015), 2015, : 559 - 563
  • [27] On a Steffensen-like method for solving nonlinear equations
    Amat, S.
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    CALCOLO, 2016, 53 (02) : 171 - 188
  • [28] Dynamics and Fractal Dimension of Steffensen-Type Methods
    Chicharro, Francisco I.
    Cordero, Alicia
    Torregrosa, Juan R.
    ALGORITHMS, 2015, 8 (02): : 271 - 279
  • [29] On a Steffensen-like method for solving nonlinear equations
    S. Amat
    J. A. Ezquerro
    M. A. Hernández-Verón
    Calcolo, 2016, 53 : 171 - 188
  • [30] Basins of Attraction for Various Steffensen-Type Methods
    Cordero, Alicia
    Soleymani, Fazlollah
    Torregrosa, Juan R.
    Shateyi, Stanford
    JOURNAL OF APPLIED MATHEMATICS, 2014,