Functional Concurrent Linear Regression Model for Spatial Images

被引:22
|
作者
Zhang, Jun [1 ]
Clayton, Murray K. [2 ]
Townsend, Philip A. [3 ]
机构
[1] Stat & Appl Math Sci Inst, Res Triangle Pk, NC 27709 USA
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Forest & Wildlife Ecol, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Dimension reduction; LASSO; Regression models for spatial images; Remote sensing; Satellite images; Wavelet expansion; FOREST STAND SUSCEPTIBILITY; VARIABLE SELECTION; DEFOLIATION; SHRINKAGE; LASSO;
D O I
10.1007/s13253-010-0047-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivated by a problem in describing forest nitrogen cycling, in this paper we explore regression models for spatial images. Specifically, we present a functional concurrent linear model with varying coefficients for two-dimensional spatial images. To address overparameterization issues, the parameter surfaces in this model are transformed into the wavelet domain and a sparse representation is found by using a large-scale l (1) constrained least squares algorithm. Once the sparse representation is identified, an inverse wavelet transform is applied to obtain the estimated parameter surfaces. The optimal penalization term in the objective function is determined using the Bayesian Information Criterion (BIC) and we introduce measures of model quality. Our model is versatile and can be applied to both single and multiple replicate cases.
引用
收藏
页码:105 / 130
页数:26
相关论文
共 50 条
  • [41] Functional linear regression with functional response
    Benatia, David
    Carrasco, Marine
    Florens, Jean-Pierre
    JOURNAL OF ECONOMETRICS, 2017, 201 (02) : 269 - 291
  • [42] Analysis of regularized least squares for functional linear regression model
    Tong, Hongzhi
    Ng, Michael
    JOURNAL OF COMPLEXITY, 2018, 49 : 85 - 94
  • [43] Single-index partially functional linear regression model
    Ping Yu
    Jiang Du
    Zhongzhan Zhang
    Statistical Papers, 2020, 61 : 1107 - 1123
  • [44] Composite expectile estimation in partial functional linear regression model
    Yu, Ping
    Song, Xinyuan
    Du, Jiang
    JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 203
  • [45] Statistical inference in the partial functional linear expectile regression model
    Juxia Xiao
    Ping Yu
    Xinyuan Song
    Zhongzhan Zhang
    Science China Mathematics, 2022, 65 : 2601 - 2630
  • [46] Regression imputation in the functional linear model with missing values in the response
    Crambes, Christophe
    Henchiri, Yousri
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 201 : 103 - 119
  • [47] Statistical inference in the partial functional linear expectile regression model
    Xiao, Juxia
    Yu, Ping
    Song, Xinyuan
    Zhang, Zhongzhan
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (12) : 2601 - 2630
  • [48] Statistical inference in the partial functional linear expectile regression model
    Juxia Xiao
    Ping Yu
    Xinyuan Song
    Zhongzhan Zhang
    Science China(Mathematics), 2022, 65 (12) : 2601 - 2630
  • [49] Estimation for generalized partially functional linear additive regression model
    Du, Jiang
    Cao, Ruiyuan
    Kwessi, Eddy
    Zhang, Zhongzhan
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (05) : 914 - 925
  • [50] Single-index partially functional linear regression model
    Yu, Ping
    Du, Jiang
    Zhang, Zhongzhan
    STATISTICAL PAPERS, 2020, 61 (03) : 1107 - 1123