Functional Concurrent Linear Regression Model for Spatial Images

被引:22
|
作者
Zhang, Jun [1 ]
Clayton, Murray K. [2 ]
Townsend, Philip A. [3 ]
机构
[1] Stat & Appl Math Sci Inst, Res Triangle Pk, NC 27709 USA
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Forest & Wildlife Ecol, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Dimension reduction; LASSO; Regression models for spatial images; Remote sensing; Satellite images; Wavelet expansion; FOREST STAND SUSCEPTIBILITY; VARIABLE SELECTION; DEFOLIATION; SHRINKAGE; LASSO;
D O I
10.1007/s13253-010-0047-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivated by a problem in describing forest nitrogen cycling, in this paper we explore regression models for spatial images. Specifically, we present a functional concurrent linear model with varying coefficients for two-dimensional spatial images. To address overparameterization issues, the parameter surfaces in this model are transformed into the wavelet domain and a sparse representation is found by using a large-scale l (1) constrained least squares algorithm. Once the sparse representation is identified, an inverse wavelet transform is applied to obtain the estimated parameter surfaces. The optimal penalization term in the objective function is determined using the Bayesian Information Criterion (BIC) and we introduce measures of model quality. Our model is versatile and can be applied to both single and multiple replicate cases.
引用
收藏
页码:105 / 130
页数:26
相关论文
共 50 条
  • [21] Estimation for spatial semi-functional partial linear regression model with missing response at random
    Benchikh, Tawfik
    Almanjahie, Ibrahim M.
    Fetitah, Omar
    Attouch, Mohammed Kadi
    DEMONSTRATIO MATHEMATICA, 2025, 58 (01)
  • [22] Precipitation Analysis Based on Spatial Linear Regression Model
    Jung, Jiyoung
    Jin, Seohoon
    Park, Man Sik
    KOREAN JOURNAL OF APPLIED STATISTICS, 2008, 21 (06) : 1093 - 1107
  • [23] Rethinking the linear regression model for spatial ecological data
    Wagner, Helene H.
    ECOLOGY, 2013, 94 (11) : 2381 - 2391
  • [24] Functional-coefficient partially linear regression model
    Wong, Heung
    Zhang, Riquan
    Ip, Wai-cheung
    Li, Guoying
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (02) : 278 - 305
  • [25] An RKHS model for variable selection in functional linear regression
    Berrendero, Jose R.
    Bueno-Larraz, Beatriz
    Cuevas, Antonio
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 170 : 25 - 45
  • [26] Model selection for functional linear regression with hierarchical structure
    Feng, Sanying
    Zhang, Xinyu
    Liang, Hui
    Pei, Lifang
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2022, 36 (02) : 243 - 262
  • [27] Subgroup analysis for functional partial linear regression model
    Ma, Haiqiang
    Liu, Chao
    Xu, Sheng
    Yang, Jin
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (02): : 559 - 579
  • [28] Checking the adequacy of functional linear quantile regression model
    Shi, Gongming
    Du, Jiang
    Sun, Zhihua
    Zhang, Zhongzhan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 210 : 64 - 75
  • [29] The M-estimator for functional linear regression model
    Huang, Lele
    Wang, Huiwen
    Zheng, Andi
    STATISTICS & PROBABILITY LETTERS, 2014, 88 : 165 - 173
  • [30] A fuzzy functional linear regression model with functional predictors and fuzzy responses
    Gholamreza Hesamian
    Mohammad Ghasem Akbari
    Soft Computing, 2022, 26 : 3029 - 3043