A Parallel Coordinates Plot Method Based on Unsupervised Feature Selection for High-Dimensional Data Visualization

被引:2
|
作者
Lou, Jiaqi [1 ]
Dong, Ke [2 ]
Wang, Maosen [1 ]
机构
[1] Cranfield Univ, Sch Aerosp Transport & Mfg, Bedford, England
[2] Hefei Univ Technol, Sch Comp Sci & Informat, Hefei, Peoples R China
关键词
High-Dimensional Data Visualization; PCP; Unsupervised Feature Selection; Laplacian Score; LAPLACIAN SCORE; CONSTRAINT;
D O I
10.1109/IWCMC51323.2021.9498694
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the recent years, high-dimensional data visualization has become a challenging task in data science and machine learning. As one of the most effective methods for high-dimensional data visualization, Parallel Coordinates Plots (PCPs) demonstrate dimensional reduction by transforming features of multivariate data into 2D axes. Such approach, however, does not consider the irrelevant or redundant features such that each feature is projected into the axis in a fixed manner. This paper proposed a novel PCP introduced by an unsupervised feature selection called Laplacian Score, which can be used to improve the visualization performance of PCP by ranking the importance of attributes based on their locality preserving power. The experimental results demonstrated that the performance of PCP visualization can be improved by feature selection method. Furthermore, we proposed a flexible user interface based on PCP visualization and Laplacian Score.
引用
下载
收藏
页码:532 / 536
页数:5
相关论文
共 50 条
  • [31] Efficient feature selection filters for high-dimensional data
    Ferreira, Artur J.
    Figueiredo, Mario A. T.
    PATTERN RECOGNITION LETTERS, 2012, 33 (13) : 1794 - 1804
  • [32] On the scalability of feature selection methods on high-dimensional data
    V. Bolón-Canedo
    D. Rego-Fernández
    D. Peteiro-Barral
    A. Alonso-Betanzos
    B. Guijarro-Berdiñas
    N. Sánchez-Maroño
    Knowledge and Information Systems, 2018, 56 : 395 - 442
  • [33] Simultaneous Feature and Model Selection for High-Dimensional Data
    Perolini, Alessandro
    Guerif, Sebastien
    2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 47 - 50
  • [34] Clustering high-dimensional data via feature selection
    Liu, Tianqi
    Lu, Yu
    Zhu, Biqing
    Zhao, Hongyu
    BIOMETRICS, 2023, 79 (02) : 940 - 950
  • [35] Simultaneous Feature Selection and Classification for High-Dimensional Data
    Pai, Vriddhi
    Gupta, Subhash Chand
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT 2018), 2018, : 153 - 158
  • [36] High-Dimensional Software Engineering Data and Feature Selection
    Wang, Huanjing
    Khoshgoftaar, Taghi M.
    Gao, Kehan
    Seliya, Naeem
    ICTAI: 2009 21ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, 2009, : 83 - +
  • [37] Hybrid Feature Selection for High-Dimensional Manufacturing Data
    Sun, Yajuan
    Yu, Jianlin
    Li, Xiang
    Wu, Ji Yan
    Lu, Wen Feng
    2021 26TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2021,
  • [38] Feature Selection for High-Dimensional Data: The Issue of Stability
    Pes, Barbara
    2017 IEEE 26TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES - INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE), 2017, : 170 - 175
  • [39] On the scalability of feature selection methods on high-dimensional data
    Bolon-Canedo, V.
    Rego-Fernandez, D.
    Peteiro-Barral, D.
    Alonso-Betanzos, A.
    Guijarro-Berdinas, B.
    Sanchez-Marono, N.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 56 (02) : 395 - 442
  • [40] A hybrid feature selection scheme for high-dimensional data
    Ganjei, Mohammad Ahmadi
    Boostani, Reza
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 113