A note on the lower bound of representation functions

被引:0
|
作者
Jiang, Xing-Wang [1 ]
Sandor, Csaba [2 ,3 ]
Yang, Quan-Hui [4 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Peoples R China
[2] Budapest Univ Technol & Econ, Inst Math, Budapest, Hungary
[3] Budapest Univ Technol & Econ, MTA BME Lendulet Arithmet Combinator Res Grp, H-1529 Budapest, Hungary
[4] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Partition; representation function; Thue-Morse sequence; Sarkozy's problem; ADDITIVE PROPERTIES; NATURAL-NUMBERS; PARTITIONS; VALUES;
D O I
10.1142/S179304212150086X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a set A of nonnegative integers, let R-2(A,n) denote the number of solutions to n = a + a ' with a,a 'is an element of A, a < a '. Let A(0) be the Thue-Morse sequence and B-0 = N\A(0). Let A subset of N and N be a positive integer such that R-2(A,n) = R-2(N\A,n) for all n >= 2N - 1. Previously, the first author proved that if |A boolean AND A(0)| = +infinity and |A boolean AND B-0| = +infinity, then R-2(A,n) >= n+3/56N-52 - 1 for all n >= 1. In this paper, we prove that the above lower bound is nearly best possible. We also get some other results.
引用
收藏
页码:2243 / 2250
页数:8
相关论文
共 50 条
  • [41] A NOTE ON SAWOROTNOWS REPRESENTATION THEOREM ON POSITIVE DEFINITE FUNCTIONS
    MOLNAR, L
    HOUSTON JOURNAL OF MATHEMATICS, 1991, 17 (01): : 89 - 99
  • [42] Asymptotic lower bound of class numbers along a Galois representation
    Ohshita, Tatsuya
    JOURNAL OF NUMBER THEORY, 2020, 211 : 95 - 112
  • [43] Additive representation in thin sequences, IV:: Lower bound methods
    Brüdern, J
    Kawada, K
    Wooley, TD
    QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 : 423 - 436
  • [44] GROWTH OF MEROMORPHIC FUNCTIONS ALLOWING A SPECIAL LOWER BOUND
    SERGIENK.EN
    DOKLADY AKADEMII NAUK SSSR, 1973, 208 (06): : 1298 - 1299
  • [45] LOWER BOUND FOR CONTROLLING PARAMETERS OF EXACT PENALTY FUNCTIONS
    CHARALAMBOUS, C
    MATHEMATICAL PROGRAMMING, 1978, 15 (03) : 278 - 290
  • [46] ON THE LOWER BOUND FOR A CLASS OF HARMONIC FUNCTIONS IN THE HALF SPACE
    Zhang Yanhui
    Deng Guantie
    Kou, Kit Ian
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (04) : 1487 - 1494
  • [47] On the Lower Bound of Minimizing Polyak-Lojasiewicz Functions
    Yue, Pengyun
    Fang, Cong
    Lin, Zhouchen
    THIRTY SIXTH ANNUAL CONFERENCE ON LEARNING THEORY, VOL 195, 2023, 195
  • [48] ON THE LOWER BOUND FOR A CLASS OF HARMONIC FUNCTIONS IN THE HALF SPACE
    张艳慧
    邓冠铁
    高洁欣
    Acta Mathematica Scientia, 2012, 32 (04) : 1487 - 1494
  • [49] LOWER BOUND ON WEIGHTS OF LARGE DEGREE THRESHOLD FUNCTIONS
    Podolskii, Vladimir V.
    LOGICAL METHODS IN COMPUTER SCIENCE, 2013, 9 (02)
  • [50] On the Lower Bound of Minimizing Polyak-Lojasiewicz Functions
    Yue, Pengyun
    Fang, Cong
    Lin, Zhouchen
    arXiv, 2022,