A note on the lower bound of representation functions

被引:0
|
作者
Jiang, Xing-Wang [1 ]
Sandor, Csaba [2 ,3 ]
Yang, Quan-Hui [4 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Peoples R China
[2] Budapest Univ Technol & Econ, Inst Math, Budapest, Hungary
[3] Budapest Univ Technol & Econ, MTA BME Lendulet Arithmet Combinator Res Grp, H-1529 Budapest, Hungary
[4] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Partition; representation function; Thue-Morse sequence; Sarkozy's problem; ADDITIVE PROPERTIES; NATURAL-NUMBERS; PARTITIONS; VALUES;
D O I
10.1142/S179304212150086X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a set A of nonnegative integers, let R-2(A,n) denote the number of solutions to n = a + a ' with a,a 'is an element of A, a < a '. Let A(0) be the Thue-Morse sequence and B-0 = N\A(0). Let A subset of N and N be a positive integer such that R-2(A,n) = R-2(N\A,n) for all n >= 2N - 1. Previously, the first author proved that if |A boolean AND A(0)| = +infinity and |A boolean AND B-0| = +infinity, then R-2(A,n) >= n+3/56N-52 - 1 for all n >= 1. In this paper, we prove that the above lower bound is nearly best possible. We also get some other results.
引用
收藏
页码:2243 / 2250
页数:8
相关论文
共 50 条