Riemann-Hilbert problems and soliton solutions for a multi-component cubic-quintic nonlinear Schrodinger equation

被引:11
|
作者
Zhang, Yong [1 ]
Dong, Huan-He [1 ]
Wang, Deng-Shan [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Multi-component cubic-quintic nonlinear; Schrodinger equation; Integrable hierarchy; Riemann-Hilbert problem; Soliton solution; INVERSE SCATTERING TRANSFORM; SEMIDIRECT SUMS; MKDV SYSTEM; INTEGRABILITY; EVOLUTION; WAVES;
D O I
10.1016/j.geomphys.2019.103569
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the zero curvature equation, an arbitrary order matrix spectral problem is studied and its associated multi-component cubic-quintic nonlinear Schrodinger integrable hierarchy is derived. In order to solve the multi-component cubic-quintic nonlinear Schrodinger system, a class of Riemann-Hilbert problem is proposed with appropriate transformation. Through the special Riemann-Hilbert problem, where the jump matrix is considered to be an identity matrix, the soliton solutions of all integrable equations are explicitly calculated. The specific examples of one-soliton, two-soliton and N-soliton solutions are explicitly presented. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH VARIABLE COEFFICIENTS
    Triki, Houria
    Wazwaz, Abdul-Majid
    ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (3-4): : 360 - 366
  • [2] Criteria for existence and stability of soliton solutions of the cubic-quintic nonlinear Schrodinger equation
    Schürmann, HW
    Serov, VS
    PHYSICAL REVIEW E, 2000, 62 (02): : 2821 - 2826
  • [3] Riemann-Hilbert method and multi-soliton solutions of the Kundu-nonlinear Schrodinger equation
    Yan, Xue-Wei
    NONLINEAR DYNAMICS, 2020, 102 (04) : 2811 - 2819
  • [4] Exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Zhu, Jia-Min
    Ma, Zheng-Yi
    CHAOS SOLITONS & FRACTALS, 2007, 33 (03) : 958 - 964
  • [5] The Riemann-Hilbert Approach and N-Soliton Solutions of a Four-Component Nonlinear Schrodinger Equation
    Zhou, Xin-Mei
    Tian, Shou-Fu
    Yang, Jin-Jie
    Mao, Jin-Jin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (01) : 143 - 163
  • [6] Analytical nonautonomous soliton solutions for the cubic-quintic nonlinear Schrodinger equation with distributed coefficients
    He, Ji-da
    Zhang, Jie-fang
    Zhang, Meng-yang
    Dai, Chao-qing
    OPTICS COMMUNICATIONS, 2012, 285 (05) : 755 - 760
  • [7] Matter wave soliton solutions of the cubic-quintic nonlinear Schrodinger equation with an anharmonic potential
    Liu, Yifang
    Li, Guo-Rong
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4847 - 4852
  • [8] Study of Exact Solutions to Cubic-Quintic Nonlinear Schrodinger Equation in Optical Soliton Communication
    Liu Bin
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (05) : 731 - 736
  • [9] Riemann-Hilbert approach for multi-soliton solutions of a fourth-order nonlinear Schrodinger equation
    Liu, Wenhao
    Liu, Yan
    Zhang, Yufeng
    Shi, Dandan
    MODERN PHYSICS LETTERS B, 2019, 33 (33):
  • [10] Riemann-Hilbert method for multi-soliton solutions of a fifth-order nonlinear Schrodinger equation
    Kang, Zhou-Zheng
    Xia, Tie-Cheng
    Ma, Wen-Xiu
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (01)