Characterization of the chaos-hyperchaos transition based on return times

被引:24
|
作者
Pavlov, A. N. [1 ,2 ]
Pavlova, O. N. [1 ]
Mohammad, Y. K. [1 ,3 ]
Kurths, J. [4 ,5 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Phys, Astrakhanskaya Str 83, Saratov 410012, Russia
[2] Saratov State Tech Univ, Saratov 410054, Russia
[3] Tikrit Univ Salahudin, Tikrit, Iraq
[4] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[5] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 02期
基金
俄罗斯科学基金会;
关键词
ATTRACTORS; RECONSTRUCTION; DYNAMICS;
D O I
10.1103/PhysRevE.91.022921
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the problem of the detection of hyperchaotic oscillations in coupled nonlinear systems when the available information about this complex dynamical regime is very limited. We demonstrate the ability of diagnosing the chaos-hyperchaos transition from return times into a Poincare section and show that an appropriate selection of the secant plane allows a correct estimation of two positive Lyapunov exponents (LEs) from even a single sequence of return times. We propose a generalized approach for extracting dynamics from point processes that allows avoiding spurious identification of the dynamical regime caused by artifacts. The estimated LEs are nearly close to their expected values if the second positive LE is essentially different from the largest one. If both exponents become nearly close, an underestimation of the second LE may be obtained. Nevertheless, distinctions between chaotic and hyperchaotic regimes are clearly possible.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Chaos-hyperchaos transition
    Kapitaniak, T
    Maistrenko, Y
    Popovych, S
    PHYSICAL REVIEW E, 2000, 62 (02) : 1972 - 1976
  • [2] Chaos-hyperchaos transition
    Kapitaniak, Tomasz
    Maistrenko, Yuri
    Popovych, Svitlana
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 A): : 1972 - 1976
  • [3] CHAOS-HYPERCHAOS TRANSITION
    KAPITANIAK, T
    THYLWE, KE
    COHEN, I
    WOJEWODA, J
    CHAOS SOLITONS & FRACTALS, 1995, 5 (10) : 2003 - 2011
  • [4] Hyperchaotic set in continuous chaos-hyperchaos transition
    Li, Qingdu
    Tang, Song
    Yang, Xiao-Song
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) : 3718 - 3734
  • [5] Chaos-hyperchaos transition in coupled Rossler systems
    Yanchuk, S
    Kapitaniak, T
    PHYSICS LETTERS A, 2001, 290 (3-4) : 139 - 144
  • [6] CHAOS-HYPERCHAOS INTERMITTENCY
    KAPITANIAK, T
    PROGRESS OF THEORETICAL PHYSICS, 1994, 92 (05): : 1033 - 1037
  • [7] Characterising chaos-hyperchaos transition using correlation dimension
    Harikrishnan, K. P.
    Ambika, G.
    Misra, R.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (3-4): : 839 - 846
  • [8] Characterising chaos-hyperchaos transition using correlation dimension
    K. P. Harikrishnan
    G. Ambika
    R. Misra
    The European Physical Journal Special Topics, 2013, 222 : 839 - 846
  • [9] Chaos-hyperchaos transition in a class of models governed by Sommerfeld effect
    Munteanu, Ligia
    Brisan, Cornel
    Chiroiu, Veturia
    Dumitriu, Dan
    Ioan, Rodica
    NONLINEAR DYNAMICS, 2014, 78 (03) : 1877 - 1889
  • [10] Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems
    Yanchuk, S
    Kapitaniak, T
    PHYSICAL REVIEW E, 2001, 64 (05):