Characterization of the chaos-hyperchaos transition based on return times

被引:24
|
作者
Pavlov, A. N. [1 ,2 ]
Pavlova, O. N. [1 ]
Mohammad, Y. K. [1 ,3 ]
Kurths, J. [4 ,5 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Phys, Astrakhanskaya Str 83, Saratov 410012, Russia
[2] Saratov State Tech Univ, Saratov 410054, Russia
[3] Tikrit Univ Salahudin, Tikrit, Iraq
[4] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[5] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 02期
基金
俄罗斯科学基金会;
关键词
ATTRACTORS; RECONSTRUCTION; DYNAMICS;
D O I
10.1103/PhysRevE.91.022921
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the problem of the detection of hyperchaotic oscillations in coupled nonlinear systems when the available information about this complex dynamical regime is very limited. We demonstrate the ability of diagnosing the chaos-hyperchaos transition from return times into a Poincare section and show that an appropriate selection of the secant plane allows a correct estimation of two positive Lyapunov exponents (LEs) from even a single sequence of return times. We propose a generalized approach for extracting dynamics from point processes that allows avoiding spurious identification of the dynamical regime caused by artifacts. The estimated LEs are nearly close to their expected values if the second positive LE is essentially different from the largest one. If both exponents become nearly close, an underestimation of the second LE may be obtained. Nevertheless, distinctions between chaotic and hyperchaotic regimes are clearly possible.
引用
收藏
页数:5
相关论文
共 50 条
  • [32] Characterization of homoclinic chaos through double-valued return time maps
    Zeni, AR
    Braun, T
    Correia, RRB
    Alcantara, P
    Guidoni, L
    Arimondo, E
    PHYSICAL REVIEW E, 1998, 57 (01): : 288 - 298
  • [33] Coexistence of hyperchaos with chaos and its control in a diode-bridge memristor based MLC circuit with experimental validation
    Fozin, Theophile Fonzin
    Nzoko, Bernard Koumetio
    Telem, Nicole Adelaide Kengnou
    Njitacke, Zeric Tabekoueng
    Mouelas, Adele Armele Ngo
    Kengne, Jacques
    PHYSICA SCRIPTA, 2022, 97 (07)
  • [35] Characterization of the spatial complex behavior and transition to chaos in flow systems
    Falcioni, M
    Vergni, D
    Vulpiani, A
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 125 (1-2) : 65 - 78
  • [36] Non periodic oscillations, bistability, cxistence of chaos and hyperchaos in the simplest resistorless Op-Amp based Colpitts oscillator
    Nanfa'a, R. Zebaze
    Tchitnga, R.
    Louodop Fotso, P. H.
    Kengne, R.
    Talla, F. C.
    Nana, B.
    Pelap, F. B.
    HELIYON, 2020, 6 (02)
  • [37] Cryptanalysis of an Image Encryption Algorithm Based on Combined Chaos for a BAN System, and Improved Scheme Using SHA-512 and Hyperchaos
    Ahmad, Musheer
    Al Solami, Eesa
    Wang, Xing-Yuan
    Doja, M. N.
    Beg, M. M. Sufyan
    Alzaidi, Amer Awad
    SYMMETRY-BASEL, 2018, 10 (07):
  • [38] Characterization of transition to chaos with multiple positive - Lyapunov exponents by unstable periodic orbits
    Davidchack, R
    Lai, YC
    PHYSICS LETTERS A, 2000, 270 (06) : 308 - 313
  • [39] ANALYSIS AND CHARACTERIZATION OF TRANSITION-STATES IN METABOLIC SYSTEMS - TRANSITION TIMES AND THE PASSIVITY OF THE OUTPUT FLUX
    TORRES, NV
    SICILIA, J
    MELENDEZHEVIA, E
    BIOCHEMICAL JOURNAL, 1991, 276 : 231 - 236
  • [40] Discovering Chaos-Based Communications by Recurrence Quantification and Quantified Return Map Analyses
    Rybin, Vyacheslav
    Butusov, Denis
    Rodionova, Ekaterina
    Karimov, Timur
    Ostrovskii, Valerii
    Tutueva, Aleksandra
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (09):