Chaos-hyperchaos transition

被引:0
|
作者
Kapitaniak, Tomasz [1 ]
Maistrenko, Yuri [2 ]
Popovych, Svitlana [2 ]
机构
[1] Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz, Poland
[2] Institute of Mathematics, Academy of Sciences of Ukraine, 3 Tereshchenkivska Street, Kiev 252601, Ukraine
关键词
Chaos hyperchaos transition - Chaotic attractor - Lyapunov exponent - Saddle repeller bifurcation - Unstable periodic orbit;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1972 / 1976
相关论文
共 50 条
  • [1] Chaos-hyperchaos transition
    Kapitaniak, T
    Maistrenko, Y
    Popovych, S
    PHYSICAL REVIEW E, 2000, 62 (02) : 1972 - 1976
  • [2] CHAOS-HYPERCHAOS TRANSITION
    KAPITANIAK, T
    THYLWE, KE
    COHEN, I
    WOJEWODA, J
    CHAOS SOLITONS & FRACTALS, 1995, 5 (10) : 2003 - 2011
  • [3] Hyperchaotic set in continuous chaos-hyperchaos transition
    Li, Qingdu
    Tang, Song
    Yang, Xiao-Song
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) : 3718 - 3734
  • [4] Chaos-hyperchaos transition in coupled Rossler systems
    Yanchuk, S
    Kapitaniak, T
    PHYSICS LETTERS A, 2001, 290 (3-4) : 139 - 144
  • [5] CHAOS-HYPERCHAOS INTERMITTENCY
    KAPITANIAK, T
    PROGRESS OF THEORETICAL PHYSICS, 1994, 92 (05): : 1033 - 1037
  • [6] Characterising chaos-hyperchaos transition using correlation dimension
    Harikrishnan, K. P.
    Ambika, G.
    Misra, R.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (3-4): : 839 - 846
  • [7] Characterization of the chaos-hyperchaos transition based on return times
    Pavlov, A. N.
    Pavlova, O. N.
    Mohammad, Y. K.
    Kurths, J.
    PHYSICAL REVIEW E, 2015, 91 (02):
  • [8] Characterising chaos-hyperchaos transition using correlation dimension
    K. P. Harikrishnan
    G. Ambika
    R. Misra
    The European Physical Journal Special Topics, 2013, 222 : 839 - 846
  • [9] Chaos-hyperchaos transition in a class of models governed by Sommerfeld effect
    Munteanu, Ligia
    Brisan, Cornel
    Chiroiu, Veturia
    Dumitriu, Dan
    Ioan, Rodica
    NONLINEAR DYNAMICS, 2014, 78 (03) : 1877 - 1889
  • [10] Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems
    Yanchuk, S
    Kapitaniak, T
    PHYSICAL REVIEW E, 2001, 64 (05):