A finite element approach for the continuum spectrum of the Dirac radial equation

被引:0
|
作者
Nikolopoulos, LAA [1 ]
机构
[1] Univ Peloponnese, Dept Telecommun Sci & Technol, GR-22100 Tripolis, Greece
关键词
Dirac equation; B splines; photoionization;
D O I
10.1007/s10910-004-1464-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Dirac radial functions are expanded in polynomial B-spline basis, transforming the Dirac equation in a generalized eigensystem matrix problem. Due to the locality nature of the B-spline functions the matrix representation of all the involved operators are highly sparse. Diagonalization of the matrix equations provides the bound and continuum eigenstates. Energies and oscillator strengths for Hydrogen and Rubidium are presented.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 50 条
  • [31] Finite Element Approach to Radial Heat Flow in Human Dermal Tissues
    Jain, Neha
    INFORMATION PROCESSING AND MANAGEMENT, 2010, 70 : 369 - 375
  • [32] INTEGRAL FINITE-ELEMENT APPROACH FOR SOLVING LAPLACE EQUATION
    MCDONALD, BH
    FRIEDMAN, M
    DECRETON, M
    WEXLER, A
    ELECTRONICS LETTERS, 1973, 9 (11) : 242 - 244
  • [33] Discontinuous finite element approach for transient radiative transfer equation
    Liu, L. H.
    Liu, L. J.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (08): : 1069 - 1074
  • [34] FINITE-BASIS-SET APPROACH TO THE DIRAC-EQUATION FOR ATOMS IN A DIRAC-FOCK-SLATER POTENTIAL
    MUKOYAMA, T
    LIN, CD
    PHYSICAL REVIEW A, 1987, 35 (12): : 4942 - 4945
  • [35] Cosserat continuum and finite element analysis
    Murakami, A
    Yoshida, N
    DEFORMATION AND PROGRESSIVE FAILURE IN GEOMECHANICS - IS-NAGOYA'97, 1997, : 871 - 876
  • [36] INVESTIGATION OF LOCAL UNLOADING OF AN ELEMENT IN A FINITE ELEMENT CONTINUUM
    Burtsev, A. Yu
    Glagolev, V. V.
    Markin, A. A.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2021, (69): : 86 - 96
  • [37] Elementary doublets of bound states of the radial Dirac equation
    Znojil, M
    MODERN PHYSICS LETTERS A, 1999, 14 (13) : 863 - 868
  • [38] Phase-integral solution of the radial Dirac equation
    Linnaeus, Staffan
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
  • [39] On the phase-integral method for the radial Dirac equation
    Esposito, Giampiero
    Santorelli, Pietro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (39)
  • [40] ACCURATE SPLINE SOLUTIONS OF THE RADIAL DIRAC-EQUATION
    FISCHER, CF
    PARPIA, FA
    PHYSICS LETTERS A, 1993, 179 (03) : 198 - 204