Nonclassical Lie symmetry and conservation laws of the nonlinear time-fractional Korteweg-de Vries equation

被引:7
|
作者
Hashemi, Mir Sajjad [1 ]
Haji-Badali, Ali [1 ]
Alizadeh, Farzaneh [1 ]
Inc, Mustafa [2 ,3 ,4 ]
机构
[1] Univ Bonab, Basic Sci Fac, Dept Math, POB 55513-95133, Bonab, Iran
[2] Biruni Univ, Dept Comp Engn, Istanbul, Turkey
[3] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
fractional equation; Lie symmetry analysis; classical and non-classical symmetries; WAVES; REDUCTIONS; DISPERSION;
D O I
10.1088/1572-9494/ac09df
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we use the symmetry of the Lie group analysis as one of the powerful tools that deals with the wide class of fractional order differential equations in the Riemann-Liouville concept. In this study, first, we employ the classical and nonclassical Lie symmetries (LS) to acquire similarity reductions of the nonlinear fractional far field Korteweg-de Vries (KdV) equation, and second, we find the related exact solutions for the derived generators. Finally, according to the LS generators acquired, we construct conservation laws for related classical and nonclassical vector fields of the fractional far field KdV equation.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] An extended Korteweg-de Vries equation: multi-soliton solutions and conservation laws
    Yildirim, Yakup
    Yasar, Emrullah
    NONLINEAR DYNAMICS, 2017, 90 (03) : 1571 - 1579
  • [42] Approximate Symmetries Analysis and Conservation Laws Corresponding to Perturbed Korteweg-de Vries Equation
    Ayaz, Tahir
    Ali, Farhad
    Mashwani, Wali Khan
    Khan, Israr Ali
    Salleh, Zabidin
    Ikramullah
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [43] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401
  • [44] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    Acta Applicandae Mathematicae, 2012, 118 : 25 - 47
  • [45] On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger's equations using homotopy analysis transform method
    Saad, K. M.
    AL-Shareef, Eman H. F.
    Alomari, A. K.
    Baleanu, Dumitru
    Gomez-Aguilar, J. F.
    CHINESE JOURNAL OF PHYSICS, 2020, 63 : 149 - 162
  • [46] Approximation of the Korteweg-de Vries equation by the nonlinear Schrodinger equation
    Schneider, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 147 (02) : 333 - 354
  • [47] On the numerical solution of the nonlinear Korteweg-de Vries equation
    Sarboland, Maryam
    Aminataei, Azim
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2015, 3 (01): : 69 - 80
  • [48] KORTEWEG-DE VRIES EQUATION FOR NONLINEAR DRIFT WAVES
    TODOROKI, J
    SANUKI, H
    PHYSICS LETTERS A, 1974, A 48 (04) : 277 - 278
  • [49] GLOBAL CONTROLLABILITY OF A NONLINEAR KORTEWEG-DE VRIES EQUATION
    Chapouly, Marianne
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (03) : 495 - 521
  • [50] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Jia, Chaohua
    Zhang, Bing-Yu
    ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 25 - 47