Nonclassical Lie symmetry and conservation laws of the nonlinear time-fractional Korteweg-de Vries equation

被引:7
|
作者
Hashemi, Mir Sajjad [1 ]
Haji-Badali, Ali [1 ]
Alizadeh, Farzaneh [1 ]
Inc, Mustafa [2 ,3 ,4 ]
机构
[1] Univ Bonab, Basic Sci Fac, Dept Math, POB 55513-95133, Bonab, Iran
[2] Biruni Univ, Dept Comp Engn, Istanbul, Turkey
[3] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
fractional equation; Lie symmetry analysis; classical and non-classical symmetries; WAVES; REDUCTIONS; DISPERSION;
D O I
10.1088/1572-9494/ac09df
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we use the symmetry of the Lie group analysis as one of the powerful tools that deals with the wide class of fractional order differential equations in the Riemann-Liouville concept. In this study, first, we employ the classical and nonclassical Lie symmetries (LS) to acquire similarity reductions of the nonlinear fractional far field Korteweg-de Vries (KdV) equation, and second, we find the related exact solutions for the derived generators. Finally, according to the LS generators acquired, we construct conservation laws for related classical and nonclassical vector fields of the fractional far field KdV equation.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Operator splitting for the fractional Korteweg-de Vries equation
    Dutta, Rajib
    Sarkar, Tanmay
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (06) : 3000 - 3022
  • [32] CHAOTIC AND SOLITONIC SOLUTIONS FOR A NEW TIME-FRACTIONAL TWO-MODE KORTEWEG-DE VRIES EQUATION
    Alquran, Marwan
    Jaradat, Imad
    Momani, Shaher
    Baleanu, Dumitru
    ROMANIAN REPORTS IN PHYSICS, 2020, 72 (03)
  • [33] A numerical solution of time-fractional coupled Korteweg-de Vries equation by using spectral collection method
    Albuohimad, Basim
    Adibi, Hojatollah
    Kazem, Saeed
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 1897 - 1905
  • [34] Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation
    Gangwei Wang
    A. H. Kara
    K. Fakhar
    Nonlinear Dynamics, 2015, 82 : 281 - 287
  • [35] Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation
    Wang, Gangwei
    Kara, A. H.
    Fakhar, K.
    NONLINEAR DYNAMICS, 2015, 82 (1-2) : 281 - 287
  • [36] Non-classical Lie symmetry and conservation laws of the nonlinear time-fractional Kundu–Eckhaus (KE) equation
    Mir Sajjad Hashemi
    Ali Haji-Badali
    Farzaneh Alizadeh
    Pramana, 2021, 95
  • [37] Numerical method satisfying the first two conservation laws for the Korteweg-de Vries equation
    Cui, Yanfen
    Mao, De-Kang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (01) : 376 - 399
  • [38] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [39] Conservation laws, periodic and rational solutions for an extended modified Korteweg-de Vries equation
    Wang, Xin
    Zhang, Jianlin
    Wang, Lei
    NONLINEAR DYNAMICS, 2018, 92 (04) : 1507 - 1516
  • [40] Conservation Laws for a Generalized Coupled Korteweg-de Vries System
    Nkwanazana, Daniel Mpho
    Muatjetjeja, Ben
    Khalique, Chaudry Masood
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013