Spectral theory of sparse non-Hermitian random matrices

被引:43
|
作者
Metz, Fernando Lucas [1 ,2 ]
Neri, Izaak [3 ]
Rogers, Tim [4 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil
[2] London Math Lab, 8 Margravine Gardens, London W6 8RH, England
[3] Kings Coll London, Dept Math, London WC2R 2LS, England
[4] Univ Bath, Ctr Networks & Collect Behav, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
random matrix theory; sparse matrices; non-Hermitian matrices; complex networks; DENSITY-OF-STATES; EIGENVECTORS; LOCALIZATION; REAL; UNIVERSALITY; STATISTICS; ENSEMBLES; MODEL;
D O I
10.1088/1751-8121/ab1ce0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Sparse non-Hermitian random matrices arise in the study of disordered physical systems with asymmetric local interactions, and have applications ranging from neural networks to ecosystem dynamics. The spectral characteristics of these matrices provide crucial information on system stability and susceptibility, however, their study is greatly complicated by the twin challenges of a lack of symmetry and a sparse interaction structure. In this review we provide a concise and systematic introduction to the main tools and results in this field. We show how the spectra of sparse non-Hermitian matrices can be computed via an analogy with infinite dimensional operators obeying certain recursion relations. With reference to three illustrative examples-adjacency matrices of regular oriented graphs, adjacency matrices of oriented Erdos-Renyi graphs, and adjacency matrices of weighted oriented Erdos-Renyi graphs-we demonstrate the use of these methods to obtain both analytic and numerical results for the spectrum, the spectral distribution, the location of outlier eigenvalues, and the statistical properties of eigenvectors.
引用
收藏
页数:51
相关论文
共 50 条
  • [41] The Thouless formula for random non-Hermitian Jacobi matrices
    Ilya Ya. Goldsheid
    Boris A. Khoruzhenko
    Israel Journal of Mathematics, 2005, 148 : 331 - 346
  • [42] The Thouless formula for random non-Hermitian Jacobi matrices
    Goldsheid, IY
    Khoruzhenko, BA
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) : 331 - 346
  • [43] Characteristic Polynomials of Sparse Non-Hermitian Random MatricesCharacteristic Polynomials of Sparse Non-Hermitian Random MatricesI. Afanasiev, T. Shcherbina
    Ievgenii Afanasiev
    Tatyana Shcherbina
    Journal of Statistical Physics, 192 (1)
  • [44] Quaternionic R transform and non-Hermitian random matrices
    Burda, Zdzislaw
    Swiech, Artur
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [45] Non-Hermitian Random Matrices and Integrable Quantum Hamiltonians
    Akuzawa, T.
    Wadati, M.
    Journal of the Physical Society of Japan, 65 (06):
  • [46] Non-hermitian random matrix theory: Method of hermitian reduction
    Feinberg, J
    Zee, A
    NUCLEAR PHYSICS B, 1997, 504 (03) : 579 - 608
  • [47] Duality in non-Hermitian random matrix theory
    Liu, Dang-Zheng
    Zhang, Lu
    NUCLEAR PHYSICS B, 2024, 1004
  • [48] Spectral crossovers in non-Hermitian spin chains: Comparison with random matrix theory
    Sarkar, Ayana
    Sen, Sunidhi
    Kumar, Santosh
    PHYSICAL REVIEW E, 2023, 108 (05)
  • [49] Non-Hermitian Euclidean random matrix theory
    Goetschy, A.
    Skipetrov, S. E.
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [50] Non-Hermitian Tridiagonal Random Matrices and Returns to the Origin of a Random Walk
    G. M. Cicuta
    M. Contedini
    L. Molinari
    Journal of Statistical Physics, 2000, 98 : 685 - 699