On Caputo-Hadamard type coupled systems of nonconvex fractional differential inclusions

被引:6
|
作者
Belmor, Samiha [1 ]
Jarad, Fahd [2 ,3 ]
Abdeljawad, Thabet [4 ,5 ]
机构
[1] Univ Batna 2, Dept Math, Batna 05078, Algeria
[2] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[5] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
Hadamard fractional integral; Hadamard-Caputo fractional derivative; MT-function; P-function; Mizoguchi-Takahashi's condition; MULTIVALUED MAPPINGS;
D O I
10.1186/s13662-021-03534-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This research article is mainly concerned with the existence of solutions for a coupled Caputo-Hadamard of nonconvex fractional differential inclusions equipped with boundary conditions. We derive our main result by applying Mizoguchi-Takahashi's fixed point theorem with the help of P-function characterizations.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Stability analysis of Hadamard and Caputo-Hadamard fractional nonlinear systems without and with delay
    He, Bin-Bin
    Zhou, Hua-Cheng
    Kou, Chun-Hai
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) : 2420 - 2445
  • [42] Stability analysis of Hadamard and Caputo-Hadamard fractional nonlinear systems without and with delay
    Bin-Bin He
    Hua-Cheng Zhou
    Chun-Hai Kou
    [J]. Fractional Calculus and Applied Analysis, 2022, 25 : 2420 - 2445
  • [43] Some results on the study of Caputo-Hadamard fractional stochastic differential equations
    Makhlouf, Abdellatif Ben
    Mchiri, Lassaad
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 155
  • [44] A new scheme for the solution of the nonlinear Caputo-Hadamard fractional differential equations
    Saeed, Umer
    Rehman, Mujeeb ur
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 105 : 56 - 69
  • [45] EXISTENCE AND STABILITY FOR NONLINEAR CAPUTO-HADAMARD FRACTIONAL DELAY DIFFERENTIAL EQUATIONS
    Haoues, M.
    Ardjouni, A.
    Djoudi, A.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2020, 89 (02): : 225 - 242
  • [46] On Averaging Principle for Caputo-Hadamard Fractional Stochastic Differential Pantograph Equation
    Mouy, Mounia
    Boulares, Hamid
    Alshammari, Saleh
    Alshammari, Mohammad
    Laskri, Yamina
    Mohammed, Wael W.
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [47] NORMAL FORM OF BIFURCATION FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL SYSTEM WITH A PARAMETER
    Yin, Chuntao
    [J]. PROCEEDINGS OF ASME 2021 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2021, VOL 7, 2021,
  • [48] Modified Comparison Theorems for Solutions of Caputo-Hadamard Fractional Differential Equations
    Liu, Yiyu
    Zhu, Yuanguo
    Lu, Zigrang
    [J]. 2022 7TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND INDUSTRY, MCSI, 2022, : 29 - 34
  • [49] An Approach for Numerical Solutions of Caputo-Hadamard Uncertain Fractional Differential Equations
    Liu, Yiyu
    Liu, Hanjie
    Zhu, Yuanguo
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [50] MILD SOLUTIONS OF COUPLED HYBRID FRACTIONAL ORDER SYSTEM WITH CAPUTO-HADAMARD DERIVATIVES
    Bedi, Pallavi
    Kumar, Anoop
    Abdeljawad, Thabet
    Khan, Aziz
    Gomez-Aguilar, J. F.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (06)