On Caputo-Hadamard type coupled systems of nonconvex fractional differential inclusions

被引:5
|
作者
Belmor, Samiha [1 ]
Jarad, Fahd [2 ,3 ]
Abdeljawad, Thabet [4 ,5 ]
机构
[1] Univ Batna 2, Dept Math, Batna 05078, Algeria
[2] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[5] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
Hadamard fractional integral; Hadamard-Caputo fractional derivative; MT-function; P-function; Mizoguchi-Takahashi's condition; MULTIVALUED MAPPINGS;
D O I
10.1186/s13662-021-03534-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This research article is mainly concerned with the existence of solutions for a coupled Caputo-Hadamard of nonconvex fractional differential inclusions equipped with boundary conditions. We derive our main result by applying Mizoguchi-Takahashi's fixed point theorem with the help of P-function characterizations.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Combination Synchronization of Fractional Systems Involving the Caputo-Hadamard Derivative
    Nagy, Abdelhameed M.
    Ben Makhlouf, Abdellatif
    Alsenafi, Abdulaziz
    Alazemi, Fares
    MATHEMATICS, 2021, 9 (21)
  • [42] Stability analysis of Hadamard and Caputo-Hadamard fractional nonlinear systems without and with delay
    He, Bin-Bin
    Zhou, Hua-Cheng
    Kou, Chun-Hai
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) : 2420 - 2445
  • [43] Some results on the study of Caputo-Hadamard fractional stochastic differential equations
    Makhlouf, Abdellatif Ben
    Mchiri, Lassaad
    CHAOS SOLITONS & FRACTALS, 2022, 155
  • [44] Stability analysis of Hadamard and Caputo-Hadamard fractional nonlinear systems without and with delay
    Bin-Bin He
    Hua-Cheng Zhou
    Chun-Hai Kou
    Fractional Calculus and Applied Analysis, 2022, 25 : 2420 - 2445
  • [45] A new scheme for the solution of the nonlinear Caputo-Hadamard fractional differential equations
    Saeed, Umer
    Rehman, Mujeeb ur
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 105 : 56 - 69
  • [46] EXISTENCE AND STABILITY FOR NONLINEAR CAPUTO-HADAMARD FRACTIONAL DELAY DIFFERENTIAL EQUATIONS
    Haoues, M.
    Ardjouni, A.
    Djoudi, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2020, 89 (02): : 225 - 242
  • [47] On Averaging Principle for Caputo-Hadamard Fractional Stochastic Differential Pantograph Equation
    Mouy, Mounia
    Boulares, Hamid
    Alshammari, Saleh
    Alshammari, Mohammad
    Laskri, Yamina
    Mohammed, Wael W.
    FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [48] NORMAL FORM OF BIFURCATION FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL SYSTEM WITH A PARAMETER
    Yin, Chuntao
    PROCEEDINGS OF ASME 2021 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2021, VOL 7, 2021,
  • [49] An Approach for Numerical Solutions of Caputo-Hadamard Uncertain Fractional Differential Equations
    Liu, Yiyu
    Liu, Hanjie
    Zhu, Yuanguo
    FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [50] Convergence analysis of positive solution for Caputo-Hadamard fractional differential equation
    Guo, Limin
    Li, Cheng
    Qiao, Nan
    Zhao, Jingbo
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2025, 30 (02): : 212 - 230