On Caputo-Hadamard type coupled systems of nonconvex fractional differential inclusions

被引:6
|
作者
Belmor, Samiha [1 ]
Jarad, Fahd [2 ,3 ]
Abdeljawad, Thabet [4 ,5 ]
机构
[1] Univ Batna 2, Dept Math, Batna 05078, Algeria
[2] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[5] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
Hadamard fractional integral; Hadamard-Caputo fractional derivative; MT-function; P-function; Mizoguchi-Takahashi's condition; MULTIVALUED MAPPINGS;
D O I
10.1186/s13662-021-03534-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This research article is mainly concerned with the existence of solutions for a coupled Caputo-Hadamard of nonconvex fractional differential inclusions equipped with boundary conditions. We derive our main result by applying Mizoguchi-Takahashi's fixed point theorem with the help of P-function characterizations.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] On impulsive partial differential equations with Caputo-Hadamard fractional derivatives
    Zhang, Xianmin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [32] Caputo-Hadamard fractional differential Cauchy problem in Frechet spaces
    Abbas, Said
    Benchohra, Mouffak
    Berhoun, Farida
    Henderson, Johnny
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2335 - 2344
  • [33] CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS AND INCLUSIONS WITH INTEGRAL BOUNDARY CONDITIONS VIA FIXED POINT THEORY
    Lachouri, Adel
    Ardjouni, Abdelouaheb
    Gouri, Nesrine
    Khelil, Kamel Ali
    [J]. MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2022, 86 : 97 - 112
  • [34] Caputo-Hadamard fractional Halanay inequality
    He, Bin-Bin
    Zhou, Hua-Cheng
    [J]. APPLIED MATHEMATICS LETTERS, 2022, 125
  • [35] NONLINEAR IMPLICIT CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATION WITH FRACTIONAL BOUNDARY CONDITIONS
    Derdar, Nedjemeddine
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (4B): : 999 - 1014
  • [36] Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations
    Muthaiah, Subramanian
    Baleanu, Dumitru
    Thangaraj, Nandha Gopal
    [J]. AIMS MATHEMATICS, 2021, 6 (01): : 168 - 194
  • [37] Asymptotic stability and fold bifurcation analysis in Caputo-Hadamard type fractional differential system
    Ma, Li
    Huang, Ruoyan
    [J]. CHINESE JOURNAL OF PHYSICS, 2024, 88 : 171 - 197
  • [38] Existence results for a fraction hybrid differential inclusion with Caputo-Hadamard type fractional derivative
    Samei, Mohammad Esmael
    Hedayati, Vahid
    Rezapour, Shahram
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [39] Combination Synchronization of Fractional Systems Involving the Caputo-Hadamard Derivative
    Nagy, Abdelhameed M.
    Ben Makhlouf, Abdellatif
    Alsenafi, Abdulaziz
    Alazemi, Fares
    [J]. MATHEMATICS, 2021, 9 (21)
  • [40] Ulam type stability for Caputo-Hadamard fractional functional stochastic differential equations with delay
    Rhaima, Mohamed
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) : 10995 - 11006