The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires

被引:42
|
作者
Pavlovic, Milena [1 ,2 ,3 ]
Scheffer, Lonneke [1 ,2 ]
Motwani, Keshav [4 ]
Kanduri, Chakravarthi [2 ]
Kompova, Radmila [2 ]
Vazov, Nikolay [6 ]
Waagan, Knut [6 ]
Bernal, Fabian L. M. [6 ]
Costa, Alexandre Almeida [7 ]
Corrie, Brian [8 ]
Akbar, Rahmad [9 ,10 ]
Al Hajj, Ghadi S. [1 ]
Balaban, Gabriel [1 ,2 ]
Brusko, Todd M. [4 ,5 ]
Chernigovskaya, Maria [9 ,10 ]
Christley, Scott [11 ]
Cowell, Lindsay G. [12 ]
Frank, Robert [9 ,10 ]
Grytten, Ivar [1 ,2 ]
Gundersen, Sveinung [2 ]
Haff, Ingrid Hobaek [12 ]
Hovig, Eivind [1 ,2 ,15 ]
Hsieh, Ping-Han [16 ]
Klambauer, Gunter [13 ,14 ]
Kuijjer, Marieke L. [16 ,17 ]
Lund-Andersen, Christin [15 ,18 ]
Martini, Antonio [1 ]
Minotto, Thomas [12 ]
Pensar, Johan [12 ]
Rand, Knut [1 ,2 ]
Riccardi, Enrico [1 ,2 ]
Robert, Philippe A. [9 ,10 ]
Rocha, Artur [7 ]
Slabodkin, Andrei [9 ,10 ]
Snapkov, Igor [9 ,10 ]
Sollid, Ludvig M. [3 ,9 ,10 ]
Titov, Dmytro [2 ]
Weber, Cedric R. [19 ]
Widrich, Michael [13 ,14 ]
Yaari, Gur [20 ]
Greiff, Victor [9 ,10 ]
Sandve, Geir Kjetil [1 ,2 ,3 ]
机构
[1] Univ Oslo, Dept Informat, Oslo, Norway
[2] Univ Oslo, Ctr Bioinformat, Oslo, Norway
[3] Univ Oslo, KG Jebsen Ctr Coeliac Dis Res, Inst Clin Med, Oslo, Norway
[4] Univ Florida, Diabet Inst, Coll Med, Dept Pathol Immunol & Lab Med, Gainesville, FL USA
[5] Univ Florida, Diabet Inst, Coll Med, Dept Pediat, Gainesville, FL USA
[6] Univ Oslo, Univ Ctr Informat Technol, Oslo, Norway
[7] Inst Syst & Comp Engn Technol & Sci, Porto, Portugal
[8] Simon Fraser Univ, Biol Sci, Burnaby, BC, Canada
[9] Univ Oslo, Dept Immunol, Oslo, Norway
[10] Oslo Univ Hosp, Oslo, Norway
[11] UT Southwestern Med Ctr, Dept Populat & Data Sci, Lawton, OK USA
[12] Univ Oslo, Dept Math, Oslo, Norway
[13] Johannes Kepler Univ Linz, Inst Machine Learning, ELLIS Unit Linz, Linz, Austria
[14] Johannes Kepler Univ Linz, Inst Machine Learning, LIT AI Lab, Linz, Austria
[15] Oslo Univ Hosp, Norwegian Radium Hosp, Inst Canc Res, Dept Tumor Biol, Oslo, Norway
[16] Univ Oslo, Ctr Mol Med Norway NCMM, Nordic EMBL Partnership, Oslo, Norway
[17] Leiden Univ, Dept Pathol, Med Ctr, Leiden, Netherlands
[18] Inst Clin Med, Univ Oslo, Fac Med, Oslo, Norway
[19] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Zurich, Switzerland
[20] Bar Ilan Univ, Fac Engn, Ramat Gan, Israel
基金
欧盟地平线“2020”; 美国国家卫生研究院;
关键词
CELL; DEEP; SIGNATURES; COMMUNITY; FEATURES; PLATFORM; TOOLKIT; BLOOD;
D O I
10.1038/s42256-021-00413-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. So far, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (1) reproducing a large-scale study on immune state prediction, (2) developing, integrating and applying a novel deep learning method for antigen specificity prediction and (3) showcasing streamlined interpretability-focused benchmarking of AIRR ML.
引用
收藏
页码:936 / +
页数:11
相关论文
共 50 条
  • [1] The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires
    Milena Pavlović
    Lonneke Scheffer
    Keshav Motwani
    Chakravarthi Kanduri
    Radmila Kompova
    Nikolay Vazov
    Knut Waagan
    Fabian L. M. Bernal
    Alexandre Almeida Costa
    Brian Corrie
    Rahmad Akbar
    Ghadi S. Al Hajj
    Gabriel Balaban
    Todd M. Brusko
    Maria Chernigovskaya
    Scott Christley
    Lindsay G. Cowell
    Robert Frank
    Ivar Grytten
    Sveinung Gundersen
    Ingrid Hobæk Haff
    Eivind Hovig
    Ping-Han Hsieh
    Günter Klambauer
    Marieke L. Kuijjer
    Christin Lund-Andersen
    Antonio Martini
    Thomas Minotto
    Johan Pensar
    Knut Rand
    Enrico Riccardi
    Philippe A. Robert
    Artur Rocha
    Andrei Slabodkin
    Igor Snapkov
    Ludvig M. Sollid
    Dmytro Titov
    Cédric R. Weber
    Michael Widrich
    Gur Yaari
    Victor Greiff
    Geir Kjetil Sandve
    Nature Machine Intelligence, 2021, 3 : 936 - 944
  • [2] Mining adaptive immune receptor repertoires for biological and clinical information using machine learning
    Greiff, Victor
    Yaari, Gur
    Cowell, Lindsay G.
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2020, 24 : 109 - 119
  • [3] Adaptive immune receptor repertoires, an overview of this exciting field
    Magadan, Susana
    IMMUNOLOGY LETTERS, 2020, 221 : 49 - 55
  • [4] Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires
    Brown, Alex J.
    Snapkov, Igor
    Akbar, Rahmad
    Pavlovic, Milena
    Miho, Enkelejda
    Sandve, Geir K.
    Greiff, Victor
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (04) : 701 - 736
  • [5] Simulation of adaptive immune receptors and repertoires with complex immune information to guide the development and benchmarking of AIRR machine learning
    Chernigovskaya, Maria
    Pavlovic, Milena
    Kanduri, Chakravarthi
    Gielis, Sofie
    Robert, Philippe A.
    Scheffer, Lonneke
    Slabodkin, Andrei
    Haff, Ingrid Hobaek
    Meysman, Pieter
    Yaari, Gur
    Sandve, Geir Kjetil
    Greiff, Victor
    NUCLEIC ACIDS RESEARCH, 2025, 53 (03)
  • [6] Bioinformatic and Statistical Analysis of Adaptive Immune Repertoires
    Greiff, Victor
    Miho, Enkelejda
    Menzel, Ulrike
    Reddy, Sai T.
    TRENDS IN IMMUNOLOGY, 2015, 36 (11) : 738 - 749
  • [7] Reference-based comparison of adaptive immune receptor repertoires
    Weber, Cedric R.
    Rubio, Teresa
    Wang, Longlong
    Zhang, Wei
    Robert, Philippe A.
    Akbar, Rahmad
    Snapkov, Igor
    Wu, Jinghua
    Kuijjer, Marieke L.
    Tarazona, Sonia
    Conesa, Ana
    Sandve, Geir K.
    Liu, Xiao
    Reddy, Sai T.
    Greiff, Victor
    CELL REPORTS METHODS, 2022, 2 (08):
  • [8] Development of adaptive immune cells and receptor repertoires from infancy to adulthood
    Trueck, Johannes
    van der Burg, Mirjam
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2020, 24 : 51 - 55
  • [9] Deciphering the complexity of immune repertoires using systems immunology and machine learning
    Greiff, V.
    Akbar, R.
    Pavlovic, M.
    Weber, C. R.
    Snapkov, I.
    Reddy, S. T.
    Sandve, G. K.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2019, 49 : 1998 - 1998
  • [10] Predicting adaptive immune receptor specificities by machine learning is a data generation problem
    Mason, Derek M.
    Reddy, Sai T.
    CELL SYSTEMS, 2024, 15 (12) : 1190 - 1197