Effects of simulation dimensionality on laser-driven electron acceleration and photon emission in hollow microchannel targets

被引:10
|
作者
Wang, Tao [1 ]
Blackman, David
Chin, Katherine
Arefiev, Alexey
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.104.045206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using two-dimensional (2D) and three-dimensional (3D) kinetic simulations, we examine the impact of simulation dimensionality on the laser-driven electron acceleration and the emission of collimated gamma -ray beams from hollow microchannel targets. We demonstrate that the dimensionality of the simulations considerably influences the results of electron acceleration and photon generation owing to the variation of laser phase velocity in different geometries. In a 3D simulation with a cylindrical geometry, the acceleration process of electrons terminates early due to the higher phase velocity of the propagating laser fields; in contrast, 2D simulations with planar geometry tend to have prolonged electron acceleration and thus produce much more energetic electrons. The photon beam generated in the 3D setup is found to be more diverged accompanied with a lower conversion efficiency. Our paper concludes that the 2D simulation can qualitatively reproduce the features in 3D simulation, but for quantitative evaluations and reliable predictions to facilitate experiment designs 3D modeling is strongly recommended.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Impact of ion dynamics on laser-driven electron acceleration and gamma-ray emission in structured targets at ultra-high laser intensities
    Wang, Tao
    Gong, Zheng
    Chin, Katherine
    Arefiev, Alexey
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (08)
  • [22] HOT-ELECTRON PREHEAT OF LASER-DRIVEN TARGETS
    KIDDER, RE
    NUCLEAR FUSION, 1981, 21 (02) : 145 - 151
  • [23] Fabrication and characterization of thin polymer targets for laser-driven ion acceleration
    Tebartz, A.
    Bedacht, S.
    Schaumann, G.
    Roth, M.
    5TH TARGET FABRICATION WORKSHOP, 2016, 713
  • [24] Enhanced laser-driven proton acceleration with gas-foil targets
    Levy, Dan
    Davoine, X.
    Debayle, A.
    Gremillet, L.
    Malka, V.
    JOURNAL OF PLASMA PHYSICS, 2020, 86 (06)
  • [25] Laser-driven acceleration of protons from hydrogenated annealed silicon targets
    Picciotto, A.
    Margarone, D.
    Krasa, J.
    Velyhan, A.
    Serra, E.
    Bellutti, P.
    Scarduelli, G.
    Calliari, L.
    Krousky, E.
    Rus, B.
    Dapor, M.
    EPL, 2010, 92 (03)
  • [26] Effects of pulse chirp on laser-driven proton acceleration
    Alexander Permogorov
    Giada Cantono
    Diego Guenot
    Anders Persson
    Claes-Göran Wahlström
    Scientific Reports, 12
  • [27] RESONANTLY LASER-DRIVEN PLASMA-WAVES FOR ELECTRON ACCELERATION
    UMSTADTER, D
    KIM, J
    ESAREY, E
    DODD, E
    NEUBERT, T
    PHYSICAL REVIEW E, 1995, 51 (04): : 3484 - 3497
  • [28] Effects of pulse chirp on laser-driven proton acceleration
    Permogorov, Alexander
    Cantono, Giada
    Guenot, Diego
    Persson, Anders
    Wahlstrom, Claes-Goran
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [29] Parametric Amplification of Laser-Driven Electron Acceleration in Underdense Plasma
    Arefiev, Alexey V.
    Breizman, Boris N.
    Schollmeier, Marius
    Khudik, Vladimir N.
    PHYSICAL REVIEW LETTERS, 2012, 108 (14)
  • [30] Modular supersonic nozzle for the stable laser-driven electron acceleration
    Lei, Zhenzhe
    Jin, Zhan
    Gu, Yan-Jun
    Sato, Shingo
    Zhidkov, Alexei
    Rondepierre, Alexandre
    Huang, Kai
    Nakanii, Nobuhiko
    Daito, Izuru
    Kando, Masaki
    Hosokai, Tomonao
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (01):