Modular supersonic nozzle for the stable laser-driven electron acceleration

被引:0
|
作者
Lei, Zhenzhe [1 ,2 ,3 ]
Jin, Zhan [1 ,2 ,3 ]
Gu, Yan-Jun [1 ,2 ]
Sato, Shingo [1 ,2 ,3 ]
Zhidkov, Alexei [1 ,2 ]
Rondepierre, Alexandre [1 ,2 ]
Huang, Kai [2 ,4 ]
Nakanii, Nobuhiko [2 ,4 ]
Daito, Izuru [4 ]
Kando, Masaki [1 ,2 ,4 ]
Hosokai, Tomonao [1 ,2 ,3 ]
机构
[1] Osaka Univ, SANKEN, Mihogaoka 8-1, Ibaraki, Osaka 5670047, Japan
[2] RIKEN, SPring 8 Ctr, Innovat Light Sources Div, Laser Accelerator R&D, Kouto 1-1-1,Sayo Cho, Sayo, Hyogo 6795148, Japan
[3] Osaka Univ, Grad Sch Sci, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan
[4] Natl Inst Quantum Sci & Technol QST, Kansai Inst Photon Sci KPSI, 8-1-7 Umemidai, Kizugawa, Kyoto 6190215, Japan
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2024年 / 95卷 / 01期
关键词
BEAMS;
D O I
10.1063/5.0181414
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The sharp density down-ramp injection (shock injection) mechanism produces the quasi-monoenergetic electron beam with a bunch duration of tens of femtoseconds via laser wakefield acceleration. The stability of the accelerated electron beam strongly depends on the stability of the laser beam and the shock structure produced by the supersonic gas nozzle. In this paper, we report the study of a newly designed modular supersonic nozzle with a flexible stilling chamber and a converging-diverging structure. The performance of the nozzle is studied both numerically and experimentally with the computational fluid dynamics simulation and the Mach-Zehnder interferometry method. The simulation results and the experimental measurements are well consistent, and both prove the effectiveness of the stilling chamber in stabilizing the gas flow.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A LASER-DRIVEN ELECTRON INJECTOR FOR LASER ACCELERATION EXPERIMENTS
    EBRAHIM, NA
    MARTIN, F
    [J]. JOURNAL OF APPLIED PHYSICS, 1990, 67 (11) : 6742 - 6746
  • [2] Characteristics of laser-driven electron acceleration in vacuum
    Wang, PX
    Ho, YK
    Yuan, XQ
    Kong, Q
    Cao, N
    Shao, L
    Sessler, AM
    Esarey, E
    Moshkovich, E
    Nishida, Y
    Yugami, N
    Ito, H
    Wang, JX
    Scheid, S
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 91 (02) : 856 - 866
  • [3] Enhancement of laser-driven electron acceleration in an ion channel
    Arefiev, Alexey V.
    Khudik, Vladimir N.
    Schollmeier, Marius
    [J]. PHYSICS OF PLASMAS, 2014, 21 (03)
  • [4] Laser-driven electron acceleration in nanoplate array targets
    Knyazev, A. R.
    Zhang, Y.
    Krasheninnikov, S., I
    [J]. PHYSICAL REVIEW E, 2021, 103 (01)
  • [5] Schemes for electron acceleration by laser-driven plasma waves
    Sheng, ZM
    Zhang, J
    [J]. HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2006, 30 : 153 - 155
  • [6] ELECTRON ACCELERATION USING LASER-DRIVEN PHOTOCONDUCTIVE SWITCHING
    BAMBER, C
    DONALDSON, W
    LINCKE, E
    MELISSINOS, AC
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1993, 327 (2-3): : 227 - 252
  • [7] Few-Cycle Laser-Driven Electron Acceleration
    Schmid, K.
    Veisz, L.
    Tavella, F.
    Benavides, S.
    Tautz, R.
    Herrmann, D.
    Buck, A.
    Hidding, B.
    Marcinkevicius, A.
    Schramm, U.
    Geissler, M.
    Meyer-ter-Vehn, J.
    Habs, D.
    Krausz, F.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (12)
  • [8] Laser-driven electron acceleration in an inhomogeneous plasma channel
    Zhang, Rong
    Cheng, Li-Hong
    Xue, Ju-Kui
    [J]. PHYSICS OF PLASMAS, 2015, 22 (12)
  • [9] Demonstration of electron acceleration in a laser-driven dielectric microstructure
    Peralta, E. A.
    Soong, K.
    England, R. J.
    Colby, E. R.
    Wu, Z.
    Montazeri, B.
    McGuinness, C.
    McNeur, J.
    Leedle, K. J.
    Walz, D.
    Sozer, E. B.
    Cowan, B.
    Schwartz, B.
    Travish, G.
    Byer, R. L.
    [J]. NATURE, 2013, 503 (7474) : 91 - +
  • [10] Demonstration of electron acceleration in a laser-driven dielectric microstructure
    E. A. Peralta
    K. Soong
    R. J. England
    E. R. Colby
    Z. Wu
    B. Montazeri
    C. McGuinness
    J. McNeur
    K. J. Leedle
    D. Walz
    E. B. Sozer
    B. Cowan
    B. Schwartz
    G. Travish
    R. L. Byer
    [J]. Nature, 2013, 503 : 91 - 94