The geometry of Pringsheim's continued fractions

被引:6
|
作者
Beardon, AF [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB30 WB, England
关键词
continued fractions; Pringsheim; inverse points;
D O I
10.1023/A:1010361030641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a completely geometric interpretation of Pringsheim's classical convergence criterion for continued fractions, and we use this to derive the convergence of, and other information about, the continued fraction.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 50 条
  • [41] Continued fractions and S-units in function fields
    V. V. Benyash-Krivets
    V. P. Platonov
    Doklady Mathematics, 2008, 78 : 833 - 838
  • [42] The origins of Euler's early work on continued fractions
    Cretney, Rosanna
    HISTORIA MATHEMATICA, 2014, 41 (02) : 139 - 156
  • [43] A multidimensional generalization of Lagrange’s theorem on continued fractions
    A. V. Bykovskaya
    Mathematical Notes, 2012, 92 : 312 - 326
  • [44] On a multidimensional generalization of Lagrange's theorem on continued fractions
    German, O. N.
    Lakshtanov, E. L.
    IZVESTIYA MATHEMATICS, 2008, 72 (01) : 47 - 61
  • [45] Devil's staircases and continued fractions in Josephson junctions
    Shukrinov, Yu. M.
    Medvedeva, S. Yu.
    Botha, A. E.
    Kolahchi, M. R.
    Irie, A.
    PHYSICAL REVIEW B, 2013, 88 (21)
  • [46] ON THE RELATIONSHIP BETWEEN GENERALIZED CONTINUED FRACTIONS AND G-CONTINUED FRACTIONS
    LEVRIE, P
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 32 (1-2) : 159 - 167
  • [47] Continued Fractions Method and Pascal's Triangle.
    Komorowski, Mieczyslaw
    Rozprawy Elektrotechniczne, 1985, 31 (01): : 13 - 23
  • [48] Continued fractions versus Farey fractions
    Bender, A
    DR DOBBS JOURNAL, 1996, 21 (05): : 99 - 101
  • [49] On convergence of generalized continued fractions and Ramanujan's conjecture
    Glutsyuk, AA
    COMPTES RENDUS MATHEMATIQUE, 2005, 341 (07) : 427 - 432
  • [50] Schneider’s p-adic continued fractions
    T. Pejković
    Acta Mathematica Hungarica, 2023, 169 : 191 - 215