The geometry of Pringsheim's continued fractions

被引:6
|
作者
Beardon, AF [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB30 WB, England
关键词
continued fractions; Pringsheim; inverse points;
D O I
10.1023/A:1010361030641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a completely geometric interpretation of Pringsheim's classical convergence criterion for continued fractions, and we use this to derive the convergence of, and other information about, the continued fraction.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 50 条
  • [31] Modular forms and Eisenstein's continued fractions
    Folsom, A
    JOURNAL OF NUMBER THEORY, 2006, 117 (02) : 279 - 291
  • [32] Good's theorem for Hurwitz continued fractions
    Gonzalez Robert, Gerardo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (07) : 1433 - 1447
  • [33] On the convergence of continued fractions at Runckel's points
    Tsygvintsev, A. V.
    RAMANUJAN JOURNAL, 2008, 15 (03): : 407 - 413
  • [34] Van Vleck’s Theorem on Continued Fractions
    Alan F. Beardon
    Ian Short
    Computational Methods and Function Theory, 2007, 7 (1) : 185 - 203
  • [35] On the convergence of continued fractions at Runckel’s points
    A. V. Tsygvintsev
    The Ramanujan Journal, 2008, 15 : 407 - 413
  • [36] On Euler's differential methods for continued fractions
    Khrushchev, Sergey
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 25 : 178 - 200
  • [37] CONTINUED FRACTIONS
    不详
    MATHEMATICS OF COMPUTATION, 1966, 20 (93) : 171 - +
  • [38] Geometry and combinatoric of Minkowski-Voronoi 3-dimensional continued fractions
    Karpenkov, Oleg
    Ustinov, Alexey
    JOURNAL OF NUMBER THEORY, 2017, 176 : 375 - 419
  • [39] Milnor's Lemma, Newton's Method, and Continued Fractions
    Bekker, Boris M.
    Ivanov, Oleg A.
    Merkurjev, Alexander S.
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (03): : 258 - 266
  • [40] Continued Logarithms and Associated Continued Fractions
    Borwein, Jonathan M.
    Calkin, Neil J.
    Lindstrom, Scott B.
    Mattingly, Andrew
    EXPERIMENTAL MATHEMATICS, 2017, 26 (04) : 412 - 429