ON OPTIMAL THRESHOLDS FOR PAIRS TRADING IN A ONE-DIMENSIONAL DIFFUSION MODEL

被引:0
|
作者
Fukasawa, Masaaki [1 ]
Maeda, Hitomi [1 ]
Sekine, J. U. N. [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
来源
ANZIAM JOURNAL | 2021年 / 63卷 / 02期
基金
日本学术振兴会;
关键词
pairs trading; threshold rule; one-dimensional diffusion; first passage time; Pearson diffusion; long-time averaged profit; asymptotic arbitrage; STATISTICAL ARBITRAGE;
D O I
10.1017/S1446181121000298
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the static maximization of long-term averaged profit, when optimal preset thresholds are determined to describe a pairs trading strategy in a general one-dimensional ergodic diffusion model of a stochastic spread process. An explicit formula for the expected value of a certain first passage time is given, which is used to derive a simple equation for determining the optimal thresholds. Asymptotic arbitrage in the long run of the threshold strategy is observed.
引用
收藏
页码:104 / 122
页数:19
相关论文
共 50 条
  • [41] Improvement of the One-dimensional Vertical Advection-diffusion Model in Seawater
    王保栋
    单宝田
    战闰
    王修林
    [J]. Journal of Oceanology and Limnology, 2003, (01) : 34 - 39
  • [42] Exact diffusion constant for the one-dimensional partially asymmetric exclusion model
    Derrida, B
    Mallick, K
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (04): : 1031 - 1046
  • [43] DIFFUSION SIMULATION WITH A DETERMINISTIC ONE-DIMENSIONAL LATTICE-GAS MODEL
    QIAN, YH
    DHUMIERES, D
    LALLEMAND, P
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (3-4) : 563 - 573
  • [44] DIFFUSION AND NONLINEAR REVERSIBLE TRAPPING IN A ONE-DIMENSIONAL SEMIINFINITE MODEL MEMBRANE
    PROCK, A
    GIERING, WP
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (06): : 2192 - 2193
  • [45] Improvement of the one-dimensional vertical advection-diffusion model in seawater
    Wang Baodong
    Shan Baotian
    Zhan Run
    Wang Xiulin
    [J]. Chinese Journal of Oceanology and Limnology, 2003, 21 (1): : 34 - 39
  • [46] Solidification in the one-dimensional model for a disordered binary alloy under diffusion
    Feng, X
    Brener, E
    Temkin, D
    Saito, Y
    Muller-Krumbhaar, H
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (03): : 663 - 669
  • [47] GLOBAL DYNAMICS AND DIFFUSION LIMIT OF A ONE-DIMENSIONAL REPULSIVE CHEMOTAXIS MODEL
    Wang, Zhi-an
    Zhao, Kun
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) : 3027 - 3046
  • [48] Nodal domain integration model of one-dimensional advection-diffusion
    Hromadka, T. V., II
    Guymon, G. L.
    [J]. ADVANCES IN WATER RESOURCES, 1982, 5 (01) : 9 - 16
  • [49] NOTE ON THE RELATIONSHIP BETWEEN THE ONE-DIMENSIONAL DIFFUSION MODEL AND THE LOGNORMAL DISTRIBUTION
    HARRIS, EK
    [J]. AIR AND WATER POLLUTION, 1964, 8 (6-7): : 421 - 423
  • [50] Solution of a one-dimensional diffusion-reaction model with spatial asymmetry
    Hinrichsen, H
    Krebs, K
    Peschel, I
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1996, 100 (01): : 105 - 114