ON OPTIMAL THRESHOLDS FOR PAIRS TRADING IN A ONE-DIMENSIONAL DIFFUSION MODEL

被引:0
|
作者
Fukasawa, Masaaki [1 ]
Maeda, Hitomi [1 ]
Sekine, J. U. N. [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
来源
ANZIAM JOURNAL | 2021年 / 63卷 / 02期
基金
日本学术振兴会;
关键词
pairs trading; threshold rule; one-dimensional diffusion; first passage time; Pearson diffusion; long-time averaged profit; asymptotic arbitrage; STATISTICAL ARBITRAGE;
D O I
10.1017/S1446181121000298
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the static maximization of long-term averaged profit, when optimal preset thresholds are determined to describe a pairs trading strategy in a general one-dimensional ergodic diffusion model of a stochastic spread process. An explicit formula for the expected value of a certain first passage time is given, which is used to derive a simple equation for determining the optimal thresholds. Asymptotic arbitrage in the long run of the threshold strategy is observed.
引用
下载
收藏
页码:104 / 122
页数:19
相关论文
共 50 条
  • [31] One-Dimensional Degenerate Diffusion Operators
    Angela A. Albanese
    Elisabetta M. Mangino
    Mediterranean Journal of Mathematics, 2013, 10 : 707 - 729
  • [32] Spin diffusion in one-dimensional antiferromagnets
    Narozhny, BN
    PHYSICAL REVIEW B, 1996, 54 (05): : 3311 - 3321
  • [33] One-Dimensional Degenerate Diffusion Operators
    Albanese, Angela A.
    Mangino, Elisabetta M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (02) : 707 - 729
  • [34] ENHANCED DIFFUSION ON A ONE-DIMENSIONAL FRACTAL
    CHATTERJI, M
    DASGUPTA, R
    BALLABH, TK
    TARAFDAR, S
    PHYSICS LETTERS A, 1993, 179 (01) : 38 - 40
  • [35] Dissipation and diffusion in one-dimensional solids
    Mahalingam, Harshitra
    Olsen, B. A.
    Rodin, A.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [36] DIFFUSION IN RANDOM ONE-DIMENSIONAL SYSTEMS
    BERNASCONI, J
    SCHNEIDER, WR
    JOURNAL OF STATISTICAL PHYSICS, 1983, 30 (02) : 355 - 362
  • [37] Diffusion in one-dimensional disordered systems
    Berlin, YA
    Burin, AL
    CHEMICAL PHYSICS LETTERS, 1996, 257 (5-6) : 665 - 673
  • [38] Symmetry breaking in one-dimensional diffusion
    Gitterman, M
    PHYSICAL REVIEW E, 2000, 62 (06) : 8820 - 8822
  • [39] A transformation of quasilinear one-dimensional diffusion
    Cherkasov, ID
    DIFFERENTIAL EQUATIONS, 1996, 32 (04) : 554 - 563
  • [40] Rate theory for one-dimensional diffusion
    Borodin, V.A.
    Physica A: Statistical Mechanics and its Applications, 1998, 260 (3-4): : 467 - 478