ON OPTIMAL THRESHOLDS FOR PAIRS TRADING IN A ONE-DIMENSIONAL DIFFUSION MODEL

被引:0
|
作者
Fukasawa, Masaaki [1 ]
Maeda, Hitomi [1 ]
Sekine, J. U. N. [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
来源
ANZIAM JOURNAL | 2021年 / 63卷 / 02期
基金
日本学术振兴会;
关键词
pairs trading; threshold rule; one-dimensional diffusion; first passage time; Pearson diffusion; long-time averaged profit; asymptotic arbitrage; STATISTICAL ARBITRAGE;
D O I
10.1017/S1446181121000298
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the static maximization of long-term averaged profit, when optimal preset thresholds are determined to describe a pairs trading strategy in a general one-dimensional ergodic diffusion model of a stochastic spread process. An explicit formula for the expected value of a certain first passage time is given, which is used to derive a simple equation for determining the optimal thresholds. Asymptotic arbitrage in the long run of the threshold strategy is observed.
引用
收藏
页码:104 / 122
页数:19
相关论文
共 50 条
  • [1] Pairs trading: optimal thresholds and profitability
    Zeng, Zhengqin
    Lee, Chi-Guhn
    [J]. QUANTITATIVE FINANCE, 2014, 14 (11) : 1881 - 1893
  • [2] On the optimal stopping of a one-dimensional diffusion
    Lamberton, Damien
    Zervos, Mihail
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 49
  • [3] On an Optimal Filtration Problem for One-Dimensional Diffusion Processes
    Kagirova G.R.
    Nasyrov F.S.
    [J]. Siberian Advances in Mathematics, 2018, 28 (3) : 155 - 165
  • [4] A ONE-DIMENSIONAL WIND MODEL FOR DIFFUSION CALCULATIONS
    ULRICH, WC
    [J]. METEOROLOGY AND ATMOSPHERIC PHYSICS, 1993, 52 (1-2) : 69 - 89
  • [5] SPECTRAL DIFFUSION IN A ONE-DIMENSIONAL PERCOLATION MODEL
    ALEXANDER, S
    BERNASCONI, J
    ORBACH, R
    [J]. PHYSICAL REVIEW B, 1978, 17 (11): : 4311 - 4314
  • [6] ONE-DIMENSIONAL DIFFUSION IN SOLUBLE MODEL POTENTIALS
    MORSCH, M
    RISKEN, H
    VOLLMER, HD
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1978, 32 (02): : 245 - 252
  • [7] One-dimensional diffusion model in an inhomogeneous region
    Fedotov, I.
    Katskov, D.
    Marais, J.
    Shatalov, M.
    [J]. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2006, 40 (06) : 573 - 579
  • [8] One-dimensional diffusion model in an inhomogeneous region
    I. Fedotov
    D. Katskov
    J. Marais
    M. Shatalov
    [J]. Theoretical Foundations of Chemical Engineering, 2006, 40 : 573 - 579
  • [9] DIFFUSION IN THE ONE-DIMENSIONAL ISING-MODEL
    ACHIAM, Y
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (05): : 1825 - 1833
  • [10] Charge diffusion in the one-dimensional Hubbard model
    Steinigeweg, R.
    Jin, F.
    De Raedt, H.
    Michielsen, K.
    Gemmer, J.
    [J]. PHYSICAL REVIEW E, 2017, 96 (02)