Asymptotic spike evolution in Rayleigh-Taylor instability

被引:16
|
作者
Clavin, P
Williams, F
机构
[1] Univ Aix Marseille 1, CNRS, Inst Rech Phenomenes Hors Equilibre, F-13384 Marseille, France
[2] Univ Aix Marseille 2, CNRS, Inst Rech Phenomenes Hors Equilibre, F-13384 Marseille, France
[3] Univ Calif San Diego, Dept Mech & Aerosp Engn, Energy Res Ctr, La Jolla, CA 92093 USA
关键词
D O I
10.1017/S0022112004002630
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An analytical study of the asymptotic behaviour of descending spikes is carried out for the idealized limit of an inviscid, incompressible fluid without surface tension, bounded by a vacuum. A self-similar solution is obtained for the shape of the free surface at the spike tip, yielding the evolution in time of the surface curvature there. The approach to free-fall acceleration is shown to follow an inverse power law in time. Results are given for both planar (two-dimensional) and axisymmetric spikes. Potential areas of application include ablation-front dynamics in inertial-confinement fusion.
引用
收藏
页码:105 / 113
页数:9
相关论文
共 50 条
  • [32] NONLINEAR EVOLUTION OF RAYLEIGH-TAYLOR INSTABILITY OF A THIN-LAYER
    COFFEY, T
    BOOK, DL
    BORIS, JP
    OTT, E
    WINSOR, NK
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 990 - 990
  • [33] NONLINEAR EVOLUTION OF ABLATIVE-DRIVEN RAYLEIGH-TAYLOR INSTABILITY
    BORIS, JP
    BODNER, SE
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (09): : 1103 - 1103
  • [34] Effect of preheating on the nonlinear evolution of the ablative Rayleigh-Taylor instability
    Ye, W. H.
    He, X. T.
    Zhang, W. Y.
    Yu, M. Y.
    EPL, 2011, 96 (03)
  • [35] SIMPLE-MODEL FOR THE NONLINEAR EVOLUTION OF THE RAYLEIGH-TAYLOR INSTABILITY
    INFELD, E
    ROWLANDS, G
    PHYSICAL REVIEW LETTERS, 1988, 60 (22) : 2273 - 2275
  • [36] Rayleigh-Taylor instability evolution in ablatively driven cylindrical implosions
    Hsing, WW
    Barnes, CW
    Beck, JB
    Hoffman, NM
    Galmiche, D
    Richard, A
    Edwards, J
    Graham, P
    Rothman, S
    Thomas, B
    PHYSICS OF PLASMAS, 1997, 4 (05) : 1832 - 1840
  • [37] Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability
    Zhao, K. G.
    Wang, L. F.
    Xue, C.
    Ye, W. H.
    Wu, J. F.
    Ding, Y. K.
    Zhang, W. Y.
    PHYSICS OF PLASMAS, 2018, 25 (03)
  • [38] Evolution of mixing width induced by general Rayleigh-Taylor instability
    Zhang, You-sheng
    He, Zhi-wei
    Gao, Fu-jie
    Li, Xin-liang
    Tian, Bao-lin
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [39] Nonlinear saturation of the Rayleigh-Taylor instability
    Das, A
    Mahajan, S
    Kaw, P
    Sen, A
    Benkadda, S
    Verga, A
    PHYSICS OF PLASMAS, 1997, 4 (04) : 1018 - 1027