Asymptotic spike evolution in Rayleigh-Taylor instability

被引:16
|
作者
Clavin, P
Williams, F
机构
[1] Univ Aix Marseille 1, CNRS, Inst Rech Phenomenes Hors Equilibre, F-13384 Marseille, France
[2] Univ Aix Marseille 2, CNRS, Inst Rech Phenomenes Hors Equilibre, F-13384 Marseille, France
[3] Univ Calif San Diego, Dept Mech & Aerosp Engn, Energy Res Ctr, La Jolla, CA 92093 USA
关键词
D O I
10.1017/S0022112004002630
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An analytical study of the asymptotic behaviour of descending spikes is carried out for the idealized limit of an inviscid, incompressible fluid without surface tension, bounded by a vacuum. A self-similar solution is obtained for the shape of the free surface at the spike tip, yielding the evolution in time of the surface curvature there. The approach to free-fall acceleration is shown to follow an inverse power law in time. Results are given for both planar (two-dimensional) and axisymmetric spikes. Potential areas of application include ablation-front dynamics in inertial-confinement fusion.
引用
收藏
页码:105 / 113
页数:9
相关论文
共 50 条
  • [21] On the Dynamical Rayleigh-Taylor Instability
    Hyung Ju Hwang
    Yan Guo
    Archive for Rational Mechanics and Analysis, 2003, 167 : 235 - 253
  • [22] THEORY OF THE RAYLEIGH-TAYLOR INSTABILITY
    KULL, HJ
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 206 (05): : 197 - 325
  • [23] Granular Rayleigh-Taylor Instability
    Vinningland, Jan Ludvig
    Johnsen, Oistein
    Flekkoy, Eirik G.
    Toussaint, Renaud
    Maloy, Knut Jorgen
    TRAFFIC AND GRANULAR FLOW '07, 2009, : 577 - +
  • [24] Confined Rayleigh-Taylor instability
    Alqatari, Samar
    Videbaek, Thomas E.
    Nagel, Sidney R.
    Hosoi, Anette
    Bischofberger, Irmgard
    PHYSICAL REVIEW FLUIDS, 2022, 7 (11)
  • [25] Granular Rayleigh-Taylor instability
    Vinningland, Jan Ludvig
    Johnsen, Oistein
    Flekkoy, Eirik G.
    Toussaint, Renaud
    Maloy, Knut Jorgen
    POWDERS AND GRAINS 2009, 2009, 1145 : 1067 - +
  • [26] AN OVERVIEW OF RAYLEIGH-TAYLOR INSTABILITY
    SHARP, DH
    PHYSICA D, 1984, 12 (1-3): : 3 - 18
  • [27] MODEL OF RAYLEIGH-TAYLOR INSTABILITY
    AREF, H
    TRYGGVASON, G
    PHYSICAL REVIEW LETTERS, 1989, 62 (07) : 749 - 752
  • [28] On saturation of Rayleigh-Taylor instability
    Frenkel, AL
    Halpern, D
    IUTAM SYMPOSIUM ON NONLINEAR WAVES IN MULTI-PHASE FLOW, 2000, 57 : 69 - 79
  • [29] COMPRESSIBLE RAYLEIGH-TAYLOR INSTABILITY
    BAKER, L
    PHYSICS OF FLUIDS, 1983, 26 (04) : 950 - 952
  • [30] Rotating Rayleigh-Taylor instability
    Scase, M. M.
    Baldwin, K. A.
    Hill, R. J. A.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (02):