Asymptotic spike evolution in Rayleigh-Taylor instability

被引:16
|
作者
Clavin, P
Williams, F
机构
[1] Univ Aix Marseille 1, CNRS, Inst Rech Phenomenes Hors Equilibre, F-13384 Marseille, France
[2] Univ Aix Marseille 2, CNRS, Inst Rech Phenomenes Hors Equilibre, F-13384 Marseille, France
[3] Univ Calif San Diego, Dept Mech & Aerosp Engn, Energy Res Ctr, La Jolla, CA 92093 USA
关键词
D O I
10.1017/S0022112004002630
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An analytical study of the asymptotic behaviour of descending spikes is carried out for the idealized limit of an inviscid, incompressible fluid without surface tension, bounded by a vacuum. A self-similar solution is obtained for the shape of the free surface at the spike tip, yielding the evolution in time of the surface curvature there. The approach to free-fall acceleration is shown to follow an inverse power law in time. Results are given for both planar (two-dimensional) and axisymmetric spikes. Potential areas of application include ablation-front dynamics in inertial-confinement fusion.
引用
收藏
页码:105 / 113
页数:9
相关论文
共 50 条
  • [1] Asymptotic behavior of the Rayleigh-Taylor instability
    Duchemin, L
    Josserand, C
    Clavin, P
    PHYSICAL REVIEW LETTERS, 2005, 94 (22)
  • [2] ON ASYMPTOTIC STAGE OF RAYLEIGH-TAYLOR INSTABILITY
    GERTSENSTEIN, SJ
    CHERNIAVSKII, VM
    SHTEMLER, IM
    DOKLADY AKADEMII NAUK SSSR, 1989, 307 (04): : 819 - 823
  • [3] Asymptotic bubble evolutions of the Rayleigh-Taylor instability
    Sohn, Sung-Ik
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (11) : 4017 - 4022
  • [4] Nonlinear evolution of the magnetohydrodynamic Rayleigh-Taylor instability
    Stone, James M.
    Gardiner, Thomas
    PHYSICS OF FLUIDS, 2007, 19 (09)
  • [5] Evolution of unsteady jets in the Rayleigh-Taylor instability
    Shtemler, YM
    Sivashinsky, GI
    Cherniavski, VM
    NONLINEAR PROCESSES IN GEOPHYSICS, 1998, 5 (03) : 181 - 186
  • [6] RAYLEIGH-TAYLOR INSTABILITY - MODES AND NONLINEAR EVOLUTION
    KULL, HJ
    LASER AND PARTICLE BEAMS, 1986, 4 : 473 - 493
  • [7] The evolution model of the rayleigh-taylor instability development
    Kuchugov, P.
    Zmitrenko, N.
    Rozanov, V.
    Yanilkin, Yu.
    Sin'kova, O.
    Statsenko, V.
    Chernyshova, O.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2012, 33 (06) : 517 - 530
  • [8] RAYLEIGH-TAYLOR INSTABILITY
    PLESSET, MS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1095 - 1095
  • [9] Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh-Taylor Instability
    Ye Wen-Hua
    Wang Li-Feng
    He Xian-Tu
    CHINESE PHYSICS LETTERS, 2010, 27 (12)
  • [10] The evolution model of the rayleigh-taylor instability development
    P. Kuchugov
    N. Zmitrenko
    V. Rozanov
    Yu. Yanilkin
    O. Sin’kova
    V. Statsenko
    O. Chernyshova
    Journal of Russian Laser Research, 2012, 33 : 517 - 530