A HAUSDORFF-YOUNG INEQUALITY FOR LOCALLY COMPACT QUANTUM GROUPS

被引:15
|
作者
Cooney, Tom [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
关键词
Fourier transform; locally compact quantum group; noncommutative L(p)-space; VONNEUMANN ALGEBRA; SPACES;
D O I
10.1142/S0129167X10006677
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact abelian group with dual group (G) over cap. The Hausdorff-Young theorem states that if f is an element of L(p)(G), where 1 <= p <= 2, then its Fourier transform F(p)(f) belongs to L(q)((G) over cap) (where (1/p) + (1/q) = 1) and parallel to F(p)(f)parallel to(q) <= parallel to f parallel to(p). Kunze and Terp extended this to unimodular and locally compact groups, respectively. We further generalize this result to an arbitrary locally compact quantum group G by defining a Fourier transform F(p) : L(p)(G) -> L(q)((G) over cap) and showing that this Fourier transform satisfies the Hausdorff-Young inequality.
引用
下载
收藏
页码:1619 / 1632
页数:14
相关论文
共 50 条