A Generalization of the Hausdorff-Young Theorem

被引:0
|
作者
M. S. Ramanujan
N. Tanović-Miller
机构
[1] University of Michigan,Department of Mathematics
[2] University of Sarajevo,Department of Mathematics
来源
关键词
Hardy Space; Sequence Space;
D O I
暂无
中图分类号
学科分类号
摘要
Considering mixed-norm sequence spaces lp,q, p, q ≧ 1, C. N. Kellogg proved the following theorem: if 1 < p ≦ 2 then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\widehat{L^p }$$ \end{document} ⊂ lp′,2 and lp,2 ⊂ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\widehat{L^{p'} }$$ \end{document}, where 1/p + 1/p′ = 1. This result extends the Hausdorff-Young Theorem.
引用
收藏
页码:279 / 303
页数:24
相关论文
共 50 条