Quasi-local rotating black holes in higher dimension: geometry

被引:44
|
作者
Lewandowski, J
Pawlowski, T
机构
[1] Univ Warsaw, Inst Fizyki Teoret, PL-00681 Warsaw, Poland
[2] Penn State Univ, Dept Phys, Ctr Gravitat Phys & Geometry, University Pk, PA 16802 USA
[3] Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1088/0264-9381/22/9/007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
With the help of a generalized Raychaudhuri equation non-expanding null surfaces are studied in an arbitrary dimensional case. The definition and basic properties of non-expanding and isolated horizons known in the literature in the four- and three-dimensional cases are generalized. A local description of the horizon's geometry is provided. The zeroth law of black-hole thermodynamics is derived. The constraints have a similar structure to that of the four-dimensional spacetime case. The geometry of a vacuum isolated horizon is determined by the induced metric and the rotation 1-form potential, local generalizations of the area and the angular momentum typically used in the stationary black-hole solutions case.
引用
收藏
页码:1573 / 1598
页数:26
相关论文
共 50 条
  • [41] A twist in the geometry of rotating black holes: seeking the cause of acausality
    Hajnal Andréka
    István Németi
    Christian Wüthrich
    General Relativity and Gravitation, 2008, 40 : 1809 - 1823
  • [42] Near horizon geometry of rotating black holes in five dimensions
    Cvetic, M
    Larsen, F
    NUCLEAR PHYSICS B, 1998, 531 (1-3) : 239 - 255
  • [43] Quasi-local energy flux
    Nester, James M.
    Chen, Chiang-Mei
    Tung, Roh-Suan
    GRAVITATION AND ASTROPHYSICS: ON THE OCCASION OF THE 90TH YEAR OF GENERAL RELATIVITY, 2007, : 389 - 395
  • [44] Quasi-local energy and compactification
    Alvarez, Enrique
    Anero, Jesus
    Milans del Bosch, Guillermo
    Santos-Garcia, Raquel
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06):
  • [45] QUASI-LOCAL ENERGY CONDITIONS
    HAYWARD, G
    PHYSICAL REVIEW D, 1995, 52 (04): : 2001 - 2006
  • [46] A twist in the geometry of rotating black holes:: seeking the cause of acausality
    Andreka, Hajnal
    Nemeti, Istvan
    Wuethrich, Christian
    GENERAL RELATIVITY AND GRAVITATION, 2008, 40 (09) : 1809 - 1823
  • [47] Quasi-local Lukasiewicz algebra
    Lacava, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1997, 11B (04): : 961 - 972
  • [48] QUASI-LOCAL MASS FOR SPHERES
    DOUGAN, AJ
    CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (11) : 2461 - 2475
  • [49] Quasi-local energy and compactification
    Enrique Alvarez
    Jesus Anero
    Guillermo Milans del Bosch
    Raquel Santos-Garcia
    Journal of High Energy Physics, 2018
  • [50] THREE QUASI-LOCAL MASSES
    Katz, Neil N.
    Khuri, Marcus A.
    MODERN PHYSICS LETTERS A, 2012, 27 (07)