Quasi-local rotating black holes in higher dimension: geometry

被引:44
|
作者
Lewandowski, J
Pawlowski, T
机构
[1] Univ Warsaw, Inst Fizyki Teoret, PL-00681 Warsaw, Poland
[2] Penn State Univ, Dept Phys, Ctr Gravitat Phys & Geometry, University Pk, PA 16802 USA
[3] Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1088/0264-9381/22/9/007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
With the help of a generalized Raychaudhuri equation non-expanding null surfaces are studied in an arbitrary dimensional case. The definition and basic properties of non-expanding and isolated horizons known in the literature in the four- and three-dimensional cases are generalized. A local description of the horizon's geometry is provided. The zeroth law of black-hole thermodynamics is derived. The constraints have a similar structure to that of the four-dimensional spacetime case. The geometry of a vacuum isolated horizon is determined by the induced metric and the rotation 1-form potential, local generalizations of the area and the angular momentum typically used in the stationary black-hole solutions case.
引用
收藏
页码:1573 / 1598
页数:26
相关论文
共 50 条
  • [31] Higher dimensional charged rotating dilaton black holes
    Ahmad Sheykhi
    Masoud Allahverdizadeh
    General Relativity and Gravitation, 2010, 42 : 367 - 379
  • [32] Effect of higher dimensions on rotating black holes shadow
    Singh, Balendra Pratap
    Kumar, Rahul
    Ghosh, Sushant G.
    NEW ASTRONOMY, 2023, 99
  • [33] Love numbers for rotating black holes in higher dimensions
    Rodriguez, Maria J.
    Santoni, Luca
    Solomon, Adam R.
    Temoche, Luis Fernando
    PHYSICAL REVIEW D, 2023, 108 (08)
  • [34] Higher-dimensional rotating charged black holes
    Caldarelli, Marco M.
    Emparan, Roberto
    Van Pol, Bert
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (04):
  • [35] An instability of higher-dimensional rotating black holes
    Dias, Oscar J. C.
    Figueras, Pau
    Monteiro, Ricardo
    Reall, Harvey S.
    Santos, Jorge E.
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05):
  • [36] ON QUASI-LOCAL NOETHERIAN RINGS
    MICHLER, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (01) : 222 - &
  • [37] Article title D-dimension Charged rotating black holes with flat transverse sections in Weitzenbock geometry
    Nashed, Gamal G. L.
    ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (10)
  • [38] INTERSECTIONS OF QUASI-LOCAL DOMAINS
    PREKOWITZ, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 181 (JUL) : 329 - 339
  • [39] QUASI-LOCAL GRAVITATIONAL ENERGY
    HAYWARD, SA
    PHYSICAL REVIEW D, 1994, 49 (02): : 831 - 839
  • [40] ROTATING BLACK-HOLES, COMPLEX-GEOMETRY, AND THERMODYNAMICS
    BROWN, JD
    MARTINEZ, EA
    YORK, JW
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES-SERIES, 1991, 631 : 225 - 234