A parameter adaptive data-driven approach for remaining useful life prediction of solenoid valves

被引:0
|
作者
Tang, Xuanheng
Peng, Jun
Chen, Bin
Jiang, Fu [1 ]
Yang, Yingze
Zhang, Rui
Gao, Dianzhu
Zhang, Xiaoyong
Huang, Zhiwu
机构
[1] Cent South Univ, Sch Informat Sci & Engn, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
MODEL;
D O I
暂无
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
As crucial parts of various engineering systems, solenoid valves (SVs) are of great importance and their failure may cause unexpected casualties. Accurately predicting the remaining useful life (RUL) of SVs helps making maintenance decision before they break down. It is hard to establish accurate physical model of SVs as they are characterized by complicated structure, multi-physics coupled working mechanism and complex degradation mechanisms. Different individuals may experience distincted degradation processes in various working environment. In this paper, a data-driven prognostic method is proposed for SVs. Firstly, a health index based on the dynamic driven current of SVs is constructed and an exponential model is established to characterize the degradation path. Then, the particle filter (PF) is introduced to reduce the noise of online measurement. Based on the denoised measurement, the parameters of the exponential model are adaptively updated with Bayesian estimation dynamically. Finally, the effectiveness and practicability of proposed method is validated by the designed experiments on SVs.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A Physics-Informed Training Approach for Data-Driven Method in Remaining Useful Life Estimation
    He, Yuxuan
    Su, Huai
    Zio, Enrico
    Fan, Lin
    Zhang, Jinjun
    2022 6TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY, ICSRS, 2022, : 500 - 504
  • [42] Hybrid Data-Driven Approach for Predicting the Remaining Useful Life of Lithium-Ion Batteries
    Li, Yuanjiang
    Li, Lei
    Mao, Runze
    Zhang, Yi
    Xu, Song
    Zhang, Jinglin
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (02): : 2789 - 2805
  • [43] A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries
    Ali, Muhammad Umair
    Zafar, Amad
    Masood, Haris
    Kallu, Karam Dad
    Khan, Muhammad Attique
    Tariq, Usman
    Kim, Ye Jin
    Chang, Byoungchol
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [44] A Data-Driven Method for Remaining Useful Life Prediction of Rolling Bearings Under Different Working Conditions
    Zhong, Xiaoyong
    Song, Xiangjin
    Liu, Guohai
    Zhao, Wenxiang
    Fan, Wei
    IEEE TRANSACTIONS ON RELIABILITY, 2024, 73 (02) : 1368 - 1379
  • [45] A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network
    An, Qinglong
    Tao, Zhengrui
    Xu, Xingwei
    El Mansori, Mohamed
    Chen, Ming
    MEASUREMENT, 2020, 154
  • [46] Multi-Sensor Data-Driven Remaining Useful Life Prediction of Semi-Observable Systems
    Li, Naipeng
    Lei, Yaguo
    Gebraeel, Nagi
    Wang, Zhijian
    Cai, Xiao
    Xu, Pengcheng
    Wang, Biao
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (11) : 11482 - 11491
  • [47] Remaining Useful Life Prediction of Power MOSFETs Using Model-Based and Data-Driven Methods
    Wu, Jinjing
    Xu, Zheng
    Wei, Xiao
    CYBER SECURITY INTELLIGENCE AND ANALYTICS, 2020, 928 : 373 - 381
  • [48] Data-Driven Predictive Maintenance Policy Based on Dynamic Probability Distribution Prediction of Remaining Useful Life
    Xie, Shulian
    Xue, Feng
    Zhang, Weimin
    Zhu, Jiawei
    MACHINES, 2023, 11 (10)
  • [49] Bearing performance degradation assessment and remaining useful life prediction based on data-driven and physical model
    Sheng, Yuanyuan
    Liu, Huanyu
    Li, Junbao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (05)
  • [50] Remaining Useful Life Prediction via a Data-Driven Deep Learning Fusion Model-CALAP
    Wu, Mingyan
    Ye, Qing
    Mu, Jianxin
    Fu, Zuyu
    Han, Yilin
    IEEE ACCESS, 2023, 11 : 112085 - 112096