A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries

被引:16
|
作者
Ali, Muhammad Umair [1 ]
Zafar, Amad [2 ]
Masood, Haris [3 ]
Kallu, Karam Dad [4 ]
Khan, Muhammad Attique [5 ]
Tariq, Usman [6 ]
Kim, Ye Jin [7 ]
Chang, Byoungchol [8 ]
机构
[1] Sejong Univ, Dept Unmanned Vehicle Engn, Seoul 05006, South Korea
[2] Ibadat Int Univ, Dept Elect Engn, Islamabad 54590, Pakistan
[3] Univ Wah, Dept Elect Engn, Wah Cantt, Pakistan
[4] Natl Univ Sci & Technol NUST, Sch Mech & Mfg Engn SMME, H-12, Islamabad, Pakistan
[5] HITEC Univ, Dept Comp Sci, Taxila, Pakistan
[6] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Al Kharj, Saudi Arabia
[7] Hanyang Univ, Dept Comp Sci, Seoul 04763, South Korea
[8] Hanyang Univ, Ctr Computat Social Sci, Seoul 04763, South Korea
关键词
GAUSSIAN PROCESS REGRESSION; CYCLE-LIFE; CAPACITY FADE; MODEL; OPTIMIZATION; PROGNOSTICS; CALENDAR;
D O I
10.1155/2022/1575303
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a novel multistep ahead predictor based upon a fusion of kernel recursive least square (KRLS) and Gaussian process regression (GPR) is proposed for the accurate prediction of the state of health (SoH) and remaining useful life (RUL) of lithium-ion batteries. The empirical mode decomposition is utilized to divide the battery capacity into local regeneration (intrinsic mode functions) and global degradation (residual). The KRLS and GPR submodels are employed to track the residual and intrinsic mode functions. For RUL, the KRLS predicted residual signal is utilized. The online available experimental battery aging data are used for the evaluation of the proposed model. The comparison analysis with other methodologies (i.e., GPR, KRLS, empirical mode decomposition with GPR, and empirical mode decomposition with KRLS) reveals the distinctiveness and superiority of the proposed approach. For 1-step ahead prediction, the proposed method tracks the trajectory with the root mean square error (RMSE) of 0.2299, and the increase of only 0.2243 RMSE is noted for 30-step ahead prediction. The RUL prediction using residual signal shows an increase of 3 to 5% in accuracy. This proposed methodology is a prospective approach for an efficient battery health prognostic.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Hybrid Data-Driven Approach for Predicting the Remaining Useful Life of Lithium-Ion Batteries
    Li, Yuanjiang
    Li, Lei
    Mao, Runze
    Zhang, Yi
    Xu, Song
    Zhang, Jinglin
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (02): : 2789 - 2805
  • [2] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Hybrid Ensembles Allied with Data-Driven Approach
    Zhao, Shuai
    Sun, Daming
    Liu, Yan
    Liang, Yuqi
    ENERGIES, 2025, 18 (05)
  • [3] A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries
    Feng, Juqiang
    Cai, Feng
    Li, Huachen
    Huang, Kaifeng
    Yin, Hao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 180 : 601 - 615
  • [4] Research on hybrid data-driven method for predicting the remaining useful life of lithium-ion batteries
    Li, Yuanjiang
    Li, Liping
    Li, Lei
    Huang, Xinyu
    Sun, Guodong
    Wang, Yina
    Zhang, Jinglin
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 309
  • [5] A Hybrid Prognostic Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Yang, Wen-An
    Xiao, Maohua
    Zhou, Wei
    Guo, Yu
    Liao, Wenhe
    SHOCK AND VIBRATION, 2016, 2016
  • [6] Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery
    Song, Yuchen
    Liu, Datong
    Yang, Chen
    Peng, Yu
    MICROELECTRONICS RELIABILITY, 2017, 75 : 142 - 153
  • [7] A Data-Driven Method With Mode Decomposition Mechanism for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Wang, Jianguo
    Zhang, Shude
    Li, Chenyu
    Wu, Lifeng
    Wang, Yingzhou
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (11) : 13684 - 13695
  • [8] A Data-Driven Method for Lithium-Ion Batteries Remaining Useful Life Prediction Based on Optimal Hyperparameters
    Zhu, Yuhao
    Shang, Yunlong
    Duan, Bin
    Gu, Xin
    Li, Shipeng
    Chen, Guicheng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7388 - 7392
  • [9] A hybrid data-driven approach for state of health estimation in lithium-ion batteries
    Ding, Can
    Guo, Qing
    Zhang, Lulu
    Wang, Tao
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 67 - 83
  • [10] State-of-Health Estimation and Remaining-Useful-Life Prediction for Lithium-Ion Battery Using a Hybrid Data-Driven Method
    Gou, Bin
    Xu, Yan
    Feng, Xue
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) : 10854 - 10867