Genome editing in mammalian cells using the CRISPR type I-D nuclease

被引:35
|
作者
Osakabe, Keishi [1 ]
Wada, Naoki [1 ]
Murakami, Emi [1 ]
Miyashita, Naoyuki [2 ]
Osakabe, Yuriko [1 ,3 ]
机构
[1] Tokushima Univ, Grad Sch Technol Ind & Social Sci, Tokushima 7708503, Japan
[2] Kindai Univ, Fac Biol Oriented Sci & Technol, Dept Computat Syst Biol, Wakayama 6496493, Japan
[3] Tokyo Inst Technol, Sch Life Sci & Technol, Yokohama, Kanagawa 2268502, Japan
基金
日本科学技术振兴机构;
关键词
GUIDED SURVEILLANCE COMPLEX; EVOLUTIONARY CLASSIFICATION; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; CAS COMPLEXES; DNA CLEAVAGE; RNA; RECOGNITION; DEFENSE; DEGRADATION;
D O I
10.1093/nar/gkab348
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Adoption of CRISPR-Cas systems, such as CRISPR-Cas9 and CRISPR-Cas12a, has revolutionized genome engineering in recent years; however, application of genome editing with CRISPR type I-the most abundant CRISPR system in bacteria-remains less developed. Type I systems, such as type I-E, and I-F, comprise the CRISPR-associated complex for antiviral defense ('Cascade': Cas5, Cas6, Cas7, Cas8 and the small subunit) and Cas3, which degrades the target DNA; in contrast, for the sub-type CRISPR-Cas type I-D, which lacks a typical Cas3 nuclease in its CRISPR locus, the mechanism of target DNA degradation remains unknown. Here, we found that Cas10d is a functional nuclease in the type I-D system, performing the role played by Cas3 in other CRISPR-Cas type I systems. The type I-D system can be used for targeted mutagenesis of genomic DNA in human cells, directing both bi-directional long-range deletions and short insertions/deletions. Our findings suggest the CRISPR-Cas type I-D system as a unique effector pathway in CRISPR that can be repurposed for genome engineering in eukaryotic cells.
引用
收藏
页码:6347 / 6363
页数:17
相关论文
共 50 条
  • [21] DNA targeting by subtype I-D CRISPR-Cas shows type I and type III features
    Lin, Jinzhong
    Fuglsang, Anders
    Kjeldsen, Anders Lynge
    Sun, Kaiyan
    Bhoobalan-Chitty, Yuvaraj
    Peng, Xu
    NUCLEIC ACIDS RESEARCH, 2020, 48 (18) : 10470 - 10478
  • [22] Versatile and efficient mammalian genome editing with Type Ⅰ-C CRISPR System of Desulfovibrio vulgaris
    Pan Li
    Dingcai Dong
    Fei Gao
    Yuyang Xie
    Honglin Huang
    Siwei Sun
    Zhao Ma
    Cheng He
    Jinsheng Lai
    Xuguang Du
    Sen Wu
    Science China(Life Sciences), 2024, 67 (11) : 2471 - 2487
  • [23] Harnessing Type I and Type III CRISPR-Cas systems for genome editing
    Li, Yingjun
    Pan, Saifu
    Zhang, Yan
    Ren, Min
    Feng, Mingxia
    Peng, Nan
    Chen, Lanming
    Liang, Yun Xiang
    She, Qunxin
    NUCLEIC ACIDS RESEARCH, 2016, 44 (04)
  • [24] Advancing CRISPR-Based Programmable Platforms beyond Genome Editing in Mammalian Cells
    Higashikuni, Yasutomi
    Lu, Timothy K.
    ACS SYNTHETIC BIOLOGY, 2019, 8 (12): : 2607 - 2619
  • [25] Structure and genome editing of type I-B CRISPR-Cas
    Lu, Meiling
    Yu, Chenlin
    Zhang, Yuwen
    Ju, Wenjun
    Ye, Zhi
    Hua, Chenyang
    Mao, Jinze
    Hu, Chunyi
    Yang, Zhenhuang
    Xiao, Yibei
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [26] In Vivo Genome Editing in Type I and II Methanotrophs Using a CRISPR/Cas9 System
    Rumah, Bashir L.
    Stevens, Benedict H. Claxton
    Yeboah, Jake E.
    Stead, Christopher E.
    Harding, Emily L.
    Minton, Nigel P.
    Zhang, Ying
    ACS SYNTHETIC BIOLOGY, 2023, 12 (02): : 544 - 554
  • [27] Editing the genome of stem cells with Zinc Finger Nuclease
    Gregory, Philip
    HUMAN GENE THERAPY, 2010, 21 (10) : 1373 - 1373
  • [28] Programmed genome editing by a miniature CRISPR-Cas12f nuclease
    Wu, Zhaowei
    Zhang, Yifei
    Yu, Haopeng
    Pan, Deng
    Wang, Yujue
    Wang, Yannan
    Li, Fan
    Liu, Chang
    Nan, Hao
    Chen, Weizhong
    Ji, Quanjiang
    NATURE CHEMICAL BIOLOGY, 2021, 17 (11) : 1132 - 1138
  • [29] Programmed genome editing by a miniature CRISPR-Cas12f nuclease
    Zhaowei Wu
    Yifei Zhang
    Haopeng Yu
    Deng Pan
    Yujue Wang
    Yannan Wang
    Fan Li
    Chang Liu
    Hao Nan
    Weizhong Chen
    Quanjiang Ji
    Nature Chemical Biology, 2021, 17 : 1132 - 1138
  • [30] Structural basis for inhibition of an archaeal CRISPR–Cas type I-D large subunit by an anti-CRISPR protein
    M. Cemre Manav
    Lan B. Van
    Jinzhong Lin
    Anders Fuglsang
    Xu Peng
    Ditlev E. Brodersen
    Nature Communications, 11