Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

被引:71
|
作者
Gu, Y. [1 ,2 ]
Matteson, J. L. [3 ]
Skelton, R. T. [3 ]
Deal, A. C. [3 ]
Stephan, E. A. [3 ]
Duttweiler, F. [3 ]
Gasaway, T. M. [3 ]
Levin, C. S. [1 ,2 ,4 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Radiol, Mol Imaging Instrumentat Lab, Stanford, CA 94305 USA
[3] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA
[4] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2011年 / 56卷 / 06期
关键词
PERFORMANCE EVALUATION; SENSITIVITY; SYSTEM;
D O I
10.1088/0031-9155/56/6/004
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm x 40 mm x 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 +/- 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 +/- 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 +/- 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.
引用
下载
收藏
页码:1563 / 1584
页数:22
相关论文
共 50 条
  • [21] High-resolution 3D printing in seconds
    Darkes-Burkey, Cameron
    Shepherd, Robert F.
    NATURE, 2020, 588 (7839) : 594 - 595
  • [22] 3D High-Resolution Geophysical Surveys
    Sack, Peter
    Haugland, Tor
    SEA TECHNOLOGY, 2012, 53 (10) : 23 - +
  • [23] High-resolution 3D survey of artworks
    Fontana, R
    Gambino, MC
    Mazzotta, C
    Greco, M
    Pampaloni, E
    Pezzati, L
    OPTICAL METROLOGY IN PRODUCTION ENGINEERING, 2004, 5457 : 719 - 726
  • [24] 3D mapping with high-resolution images
    Toutin, T
    Chénier, R
    Carbonneau, Y
    Alcaïde, N
    GEOINFORMATION FOR EUROPEAN-WIDE INTEGRATION, 2003, : 121 - 125
  • [25] High-resolution 3D imaging of tissue
    Burgess, Sean A.
    Yuan, Baohong
    Radosevich, Andrew J.
    Bouchard, Mathew B.
    Hillman, Elizabeth M. C.
    2007 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2007, : 5 - 6
  • [26] High-Resolution 3D Printing for Electronics
    Park, Young-Geun
    Yun, Insik
    Chung, Won Gi
    Park, Wonjung
    Lee, Dong Ha
    Park, Jang-Ung
    ADVANCED SCIENCE, 2022, 9 (08)
  • [27] High-resolution 3D printing in seconds
    Cameron Darkes-Burkey
    Robert F. Shepherd
    Nature, 2020, 588 : 594 - 595
  • [28] High-resolution 3D genome characterization
    Burgess D.
    Nature Reviews Genetics, 2021, 22 (8) : 481 - 481
  • [29] High-resolution 3D mapping of loops
    Linda Koch
    Nature Reviews Genetics, 2015, 16 (2) : 68 - 68
  • [30] DETECTION OF SMALL BONE ABSCESSES WITH A HIGH-RESOLUTION CADMIUM TELLURIDE PROBE
    GARCIA, DA
    ENTINE, G
    TOW, DE
    JOURNAL OF NUCLEAR MEDICINE, 1974, 15 (10) : 892 - 895