Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells

被引:38
|
作者
Cao, Yu [1 ,2 ]
Liu, Chaoying [1 ,2 ,3 ]
Yang, Tinghe [1 ,2 ]
Zhao, Yao [4 ]
Na, Yanling [4 ,5 ]
Jiang, Chongxv [4 ,5 ]
Zhou, Jing [6 ]
Pang, Jinbo [7 ]
Liu, Hong [7 ,8 ]
Rummeli, Mark H. [9 ,12 ,13 ,14 ,15 ]
Zhou, Weijia [7 ]
Cuniberti, Gianaurelio [10 ,11 ]
机构
[1] Northeast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Rene, Minist Educ, Jilin 132012, Peoples R China
[2] Northeast Elect Power Univ, Sch Elect Engn, Jilin 132012, Peoples R China
[3] Beijing Power Transmiss & Transformat Corp, Beijing 102401, Peoples R China
[4] China Railway Design Corp, Tianjin 300308, Peoples R China
[5] Natl Engn Lab Digital Construct & Evaluat Technol, Tianjin 300308, Peoples R China
[6] Northeast Elect Power Univ, Sch Chem Engn, Jilin 132012, Peoples R China
[7] Univ Shandong, Univ Jinan, Inst Adv Interdisciplinary Res iAIR, Collaborat Innovat Ctr Technol & Equipment Biol Di, Jinan 250022, Shandong, Peoples R China
[8] Shandong Univ, Ctr Bio & Micro Nano Funct Mat, State Key Lab Crystal Mat, 27 Shandanan Rd, Jinan 250100, Peoples R China
[9] Soochow Univ, Soochow Inst Energy & Mat Innovat, Coll Energy, Suzhou 215006, Peoples R China
[10] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[11] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01062 Dresden, Germany
[12] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol J, Suzhou 215006, Peoples R China
[13] Polish Acad Sci, Ctr Polymer & Carbon Mat, M Curie Sklodowskiej 34, PL-41819 Zabrze, Poland
[14] Inst Complex Mat, IFW Dresden, 20 Helmholtz Str, D-01069 Dresden, Germany
[15] VSB Tech Univ Ostrava, Inst Environm Technol CEET, 17 Listopadu 15, Ostrava 70833, Czech Republic
基金
中国国家自然科学基金;
关键词
Carrier transport; Gradient Se content; SbSSe solar Cell; Triple-junction solar cell; SB2S3; ABSORBER; CONVERSION;
D O I
10.1016/j.solmat.2022.111926
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Antimony chalcogenides emerge as a type of efficient material for solar cells. In particular, antimony sulfide-selenide (SbSSe) has attracted significant interests based on their simple preparation, excellent photoelectric performance, and tunable bandgaps. In this study, by applying energy-band engineering technologies, we ach-ieved carrier transport balance and light absorption balance for SbSSe single-and triple-junction solar cells, respectively. First in a single junction solar cell, the photoelectric conversion efficiency (PCE) of SbSSe solar cells is improved from 13.14% to 16.16% with a front-gradient Se content structure compared to a non-gradient Se content SbSSe solar cell. This improvement is attributed to the additional electric field induced by such a gradient bandgap, promoting the carrier motion. Consequently, the balance of carrier transport is realized by adjusting the drift velocities of holes and electrons simultaneously, thereby surpassing carrier recombination and improving the device parameters of short-circuit current density (Jsc) and fill factor (FF). In a next step, an SbSSe of advanced gradient bandgap has been applied as the absorber layer of middle-cell in an antimony chalcogenide based triple-junction solar cell. Based on the high Jsc and FF advantages of SbSSe sub-cells with front-gradient Se content structure, the uniform absorption of sunlight in each sub-cell and current matching of tandem solar cells could be easily realized. Eventually, the PCE of the triple-junction solar cell exhibits an enhancement from 17.34% to 19.51%. Our results demonstrate that the application of energy-band engineering technology can effectively improve device performance, providing theoretical guidance for the refined design and nano-manufacturing development of antimony chalcogenide solar cells.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells
    Li, Zhiqiang
    Liang, Xiaoyang
    Li, Gang
    Liu, Haixu
    Zhang, Huiyu
    Guo, Jianxin
    Chen, Jingwei
    Shen, Kai
    San, Xingyuan
    Yu, Wei
    Schropp, Ruud E. I.
    Mai, Yaohua
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [42] 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells
    Zhiqiang Li
    Xiaoyang Liang
    Gang Li
    Haixu Liu
    Huiyu Zhang
    Jianxin Guo
    Jingwei Chen
    Kai Shen
    Xingyuan San
    Wei Yu
    Ruud E. I. Schropp
    Yaohua Mai
    Nature Communications, 10
  • [43] Partial oxidation of the absorber layer reduces charge carrier recombination in antimony sulfide solar cells
    Goedel, Karl C.
    Roose, Bart
    Sadhanala, Aditya
    Vaynzof, Yana
    Pathak, Sandeep K.
    Steiner, Ullrich
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (02) : 1425 - 1430
  • [44] Highly Efficient Copper-Indium-Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers
    Kim, Jae-Yup
    Yang, Jiwoong
    Yu, Jung Ho
    Baek, Woonhyuk
    Lee, Chul-Ho
    Son, Hae Jung
    Hyeon, Taeghwan
    Ko, Min Jae
    ACS NANO, 2015, 9 (11) : 11286 - 11295
  • [45] Dual Effect of Superhalogen Ionic Liquids Ensures Efficient Carrier Transport for Highly Efficient and Stable Perovskite Solar Cells
    Zhang, Hui
    Xu, Shendong
    Guo, Tianle
    Du, Du
    Tao, Yuli
    Zhang, Liying
    Liu, Guozhen
    Chen, Xiaojing
    Ye, Jiajiu
    Guo, Zhen
    Zheng, Haiying
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (25) : 28826 - 28833
  • [46] Development of antimony sulfide–selenide Sb2(S,Se)3-based solar cells
    Xiaomin Wang
    Rongfeng Tang
    Chunyan Wu
    Changfei Zhu
    Tao Chen
    Journal of Energy Chemistry , 2018, (03) : 713 - 721
  • [47] An asymmetric wide-bandgap acceptor simultaneously enabling highly efficient single-junction and tandem organic solar cells
    Wang, Jianqiu
    Zhang, Maojie
    Lin, Ji
    Zheng, Zhong
    Zhu, Lei
    Bi, Pengqing
    Liang, Haiyan
    Guo, Xia
    Wu, Jingnan
    Wang, Yafei
    Yu, Linfeng
    Li, Jiayao
    Lv, Junfang
    Liu, Xiaoyu
    Liu, Feng
    Hou, Jianhui
    Li, Yongfang
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (04) : 1585 - 1593
  • [48] Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering
    Michele De Bastiani
    Alessandro J. Mirabelli
    Yi Hou
    Fabrizio Gota
    Erkan Aydin
    Thomas G. Allen
    Joel Troughton
    Anand S. Subbiah
    Furkan H. Isikgor
    Jiang Liu
    Lujia Xu
    Bin Chen
    Emmanuel Van Kerschaver
    Derya Baran
    Beatrice Fraboni
    Michael F. Salvador
    Ulrich W. Paetzold
    Edward H. Sargent
    Stefaan De Wolf
    Nature Energy, 2021, 6 : 167 - 175
  • [49] Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering
    De Bastiani, Michele
    Mirabelli, Alessandro J.
    Hou, Yi
    Gota, Fabrizio
    Aydin, Erkan
    Allen, Thomas G.
    Troughton, Joel
    Subbiah, Anand S.
    Isikgor, Furkan H.
    Liu, Jiang
    Xu, Lujia
    Chen, Bin
    Van Kerschaver, Emmanuel
    Baran, Derya
    Fraboni, Beatrice
    Salvador, Michael F.
    Paetzold, Ulrich W.
    Sargent, Edward H.
    De Wolf, Stefaan
    NATURE ENERGY, 2021, 6 (02) : 167 - +
  • [50] Investigation of the Selectivity of Carrier Transport Layers in Wide-Bandgap Perovskite Solar Cells
    Kavadiya, Shalinee
    Onno, Arthur
    Boyd, Caleb C.
    Wang, Xingyi
    Cetta, Alexa
    McGehee, Michael D.
    Holman, Zachary C.
    SOLAR RRL, 2021, 5 (07)