Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells

被引:38
|
作者
Cao, Yu [1 ,2 ]
Liu, Chaoying [1 ,2 ,3 ]
Yang, Tinghe [1 ,2 ]
Zhao, Yao [4 ]
Na, Yanling [4 ,5 ]
Jiang, Chongxv [4 ,5 ]
Zhou, Jing [6 ]
Pang, Jinbo [7 ]
Liu, Hong [7 ,8 ]
Rummeli, Mark H. [9 ,12 ,13 ,14 ,15 ]
Zhou, Weijia [7 ]
Cuniberti, Gianaurelio [10 ,11 ]
机构
[1] Northeast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Rene, Minist Educ, Jilin 132012, Peoples R China
[2] Northeast Elect Power Univ, Sch Elect Engn, Jilin 132012, Peoples R China
[3] Beijing Power Transmiss & Transformat Corp, Beijing 102401, Peoples R China
[4] China Railway Design Corp, Tianjin 300308, Peoples R China
[5] Natl Engn Lab Digital Construct & Evaluat Technol, Tianjin 300308, Peoples R China
[6] Northeast Elect Power Univ, Sch Chem Engn, Jilin 132012, Peoples R China
[7] Univ Shandong, Univ Jinan, Inst Adv Interdisciplinary Res iAIR, Collaborat Innovat Ctr Technol & Equipment Biol Di, Jinan 250022, Shandong, Peoples R China
[8] Shandong Univ, Ctr Bio & Micro Nano Funct Mat, State Key Lab Crystal Mat, 27 Shandanan Rd, Jinan 250100, Peoples R China
[9] Soochow Univ, Soochow Inst Energy & Mat Innovat, Coll Energy, Suzhou 215006, Peoples R China
[10] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[11] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01062 Dresden, Germany
[12] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol J, Suzhou 215006, Peoples R China
[13] Polish Acad Sci, Ctr Polymer & Carbon Mat, M Curie Sklodowskiej 34, PL-41819 Zabrze, Poland
[14] Inst Complex Mat, IFW Dresden, 20 Helmholtz Str, D-01069 Dresden, Germany
[15] VSB Tech Univ Ostrava, Inst Environm Technol CEET, 17 Listopadu 15, Ostrava 70833, Czech Republic
基金
中国国家自然科学基金;
关键词
Carrier transport; Gradient Se content; SbSSe solar Cell; Triple-junction solar cell; SB2S3; ABSORBER; CONVERSION;
D O I
10.1016/j.solmat.2022.111926
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Antimony chalcogenides emerge as a type of efficient material for solar cells. In particular, antimony sulfide-selenide (SbSSe) has attracted significant interests based on their simple preparation, excellent photoelectric performance, and tunable bandgaps. In this study, by applying energy-band engineering technologies, we ach-ieved carrier transport balance and light absorption balance for SbSSe single-and triple-junction solar cells, respectively. First in a single junction solar cell, the photoelectric conversion efficiency (PCE) of SbSSe solar cells is improved from 13.14% to 16.16% with a front-gradient Se content structure compared to a non-gradient Se content SbSSe solar cell. This improvement is attributed to the additional electric field induced by such a gradient bandgap, promoting the carrier motion. Consequently, the balance of carrier transport is realized by adjusting the drift velocities of holes and electrons simultaneously, thereby surpassing carrier recombination and improving the device parameters of short-circuit current density (Jsc) and fill factor (FF). In a next step, an SbSSe of advanced gradient bandgap has been applied as the absorber layer of middle-cell in an antimony chalcogenide based triple-junction solar cell. Based on the high Jsc and FF advantages of SbSSe sub-cells with front-gradient Se content structure, the uniform absorption of sunlight in each sub-cell and current matching of tandem solar cells could be easily realized. Eventually, the PCE of the triple-junction solar cell exhibits an enhancement from 17.34% to 19.51%. Our results demonstrate that the application of energy-band engineering technology can effectively improve device performance, providing theoretical guidance for the refined design and nano-manufacturing development of antimony chalcogenide solar cells.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Highly Efficient Polymer Tandem Cells and Semitransparent Cells for Solar Energy
    Chang, Chih-Yu
    Zuo, Lijian
    Yip, Hin-Lap
    Li, Chang-Zhi
    Li, Yongxi
    Hsu, Chain-Shu
    Cheng, Yen-Ju
    Chen, Hongzheng
    Jen, Alex K-Y.
    ADVANCED ENERGY MATERIALS, 2014, 4 (07)
  • [32] Design of Highly Efficient CZTS/CZTSe Tandem Solar Cells
    Samaneh Amiri
    Sajjad Dehghani
    Journal of Electronic Materials, 2020, 49 : 2164 - 2172
  • [33] Design of Highly Efficient CZTS/CZTSe Tandem Solar Cells
    Amiri, Samaneh
    Dehghani, Sajjad
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (03) : 2164 - 2172
  • [34] Highly Efficient Bifacial Silicon/Silicon Tandem Solar Cells
    Kim, Jaeun
    Lee, Sunhwa
    Park, Somin
    Ju, Minkyu
    Kim, Youngkuk
    Cho, Eun-Chel
    Dhungel, Suresh Kumar
    Yi, Junsin
    IEEE ACCESS, 2023, 11 : 21326 - 21331
  • [35] Advancements of highly efficient perovskite based tandem solar cells
    Liu, Xinxing
    Chen, Long
    Yu, Yue
    He, Dongmei
    Shai, Xuxia
    Zhang, Sam
    Zhang, Zhengfu
    Feng, Jing
    Yi, Jianhong
    Chen, Jiangzhao
    SCIENCE CHINA-MATERIALS, 2025, 68 (03) : 691 - 708
  • [36] Interface Modification of a Perovskite/Hole Transport Layer with Tetraphenyldibenzoperiflanthene for Highly Efficient and Stable Solar Cells
    Li, Shiqi
    Wu, Yukun
    Zhang, Chenxi
    Liu, Yifan
    Sun, Qinjun
    Cui, Yanxia
    Liu, Shengzhong Frank
    Hao, Yuying
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 45073 - 45082
  • [37] Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq3
    师文建
    阚泽明
    程传辉
    李文慧
    宋航琪
    李萌
    于东麒
    杜秀云
    刘维峰
    金盛烨
    丛书林
    Chinese Physics Letters, 2020, 37 (10) : 171 - 176
  • [38] Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq3*
    Shi, Wen-Jian
    Kan, Ze-Ming
    Cheng, Chuan-Hui
    Li, Wen-Hui
    Song, Hang-Qi
    Li, Meng
    Yu, Dong-Qi
    Du, Xiu-Yun
    Liu, Wei-Feng
    Jin, Sheng-Ye
    Cong, Shu-Lin
    CHINESE PHYSICS LETTERS, 2020, 37 (10)
  • [39] Routes to increase performance for antimony selenide solar cells using inorganic hole transport layers
    Campbell, Stephen
    Phillips, Laurie J.
    Major, Jonathan D.
    Hutter, Oliver S.
    Voyce, Ryan
    Qu, Yongtao
    Beattie, Neil S.
    Zoppi, Guillaume
    Barrioz, Vincent
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [40] Regulating charge carrier extraction and transport with dual-interface modification for efficient perovskite solar cells
    Ye, Weitao
    Du, Zhentao
    Ou, Deliu
    Tu, Jielei
    Shang, Ming-Hui
    Zhou, Jiahui
    Wang, Lin
    Yang, Weiyou
    Yang, Zuobao
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (25) : 8553 - 8563