Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells

被引:38
|
作者
Cao, Yu [1 ,2 ]
Liu, Chaoying [1 ,2 ,3 ]
Yang, Tinghe [1 ,2 ]
Zhao, Yao [4 ]
Na, Yanling [4 ,5 ]
Jiang, Chongxv [4 ,5 ]
Zhou, Jing [6 ]
Pang, Jinbo [7 ]
Liu, Hong [7 ,8 ]
Rummeli, Mark H. [9 ,12 ,13 ,14 ,15 ]
Zhou, Weijia [7 ]
Cuniberti, Gianaurelio [10 ,11 ]
机构
[1] Northeast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Rene, Minist Educ, Jilin 132012, Peoples R China
[2] Northeast Elect Power Univ, Sch Elect Engn, Jilin 132012, Peoples R China
[3] Beijing Power Transmiss & Transformat Corp, Beijing 102401, Peoples R China
[4] China Railway Design Corp, Tianjin 300308, Peoples R China
[5] Natl Engn Lab Digital Construct & Evaluat Technol, Tianjin 300308, Peoples R China
[6] Northeast Elect Power Univ, Sch Chem Engn, Jilin 132012, Peoples R China
[7] Univ Shandong, Univ Jinan, Inst Adv Interdisciplinary Res iAIR, Collaborat Innovat Ctr Technol & Equipment Biol Di, Jinan 250022, Shandong, Peoples R China
[8] Shandong Univ, Ctr Bio & Micro Nano Funct Mat, State Key Lab Crystal Mat, 27 Shandanan Rd, Jinan 250100, Peoples R China
[9] Soochow Univ, Soochow Inst Energy & Mat Innovat, Coll Energy, Suzhou 215006, Peoples R China
[10] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[11] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01062 Dresden, Germany
[12] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol J, Suzhou 215006, Peoples R China
[13] Polish Acad Sci, Ctr Polymer & Carbon Mat, M Curie Sklodowskiej 34, PL-41819 Zabrze, Poland
[14] Inst Complex Mat, IFW Dresden, 20 Helmholtz Str, D-01069 Dresden, Germany
[15] VSB Tech Univ Ostrava, Inst Environm Technol CEET, 17 Listopadu 15, Ostrava 70833, Czech Republic
基金
中国国家自然科学基金;
关键词
Carrier transport; Gradient Se content; SbSSe solar Cell; Triple-junction solar cell; SB2S3; ABSORBER; CONVERSION;
D O I
10.1016/j.solmat.2022.111926
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Antimony chalcogenides emerge as a type of efficient material for solar cells. In particular, antimony sulfide-selenide (SbSSe) has attracted significant interests based on their simple preparation, excellent photoelectric performance, and tunable bandgaps. In this study, by applying energy-band engineering technologies, we ach-ieved carrier transport balance and light absorption balance for SbSSe single-and triple-junction solar cells, respectively. First in a single junction solar cell, the photoelectric conversion efficiency (PCE) of SbSSe solar cells is improved from 13.14% to 16.16% with a front-gradient Se content structure compared to a non-gradient Se content SbSSe solar cell. This improvement is attributed to the additional electric field induced by such a gradient bandgap, promoting the carrier motion. Consequently, the balance of carrier transport is realized by adjusting the drift velocities of holes and electrons simultaneously, thereby surpassing carrier recombination and improving the device parameters of short-circuit current density (Jsc) and fill factor (FF). In a next step, an SbSSe of advanced gradient bandgap has been applied as the absorber layer of middle-cell in an antimony chalcogenide based triple-junction solar cell. Based on the high Jsc and FF advantages of SbSSe sub-cells with front-gradient Se content structure, the uniform absorption of sunlight in each sub-cell and current matching of tandem solar cells could be easily realized. Eventually, the PCE of the triple-junction solar cell exhibits an enhancement from 17.34% to 19.51%. Our results demonstrate that the application of energy-band engineering technology can effectively improve device performance, providing theoretical guidance for the refined design and nano-manufacturing development of antimony chalcogenide solar cells.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Simple solar cells of 3.5% efficiency with antimony sulfide-selenide thin films
    Perez-Martinez, Diego
    Diego Gonzaga-Sanchez, Jose
    De Bray-Sanchez, Fabiola
    Vazquez-Garcia, Geovanni
    Escorcia-Garcia, Jose
    Nair, M. T. S.
    Nair, P. K.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (05): : 388 - 396
  • [2] Antimony sulfide-selenide thin film solar cells produced from stibnite mineral
    Nair, P. K.
    Vazquez Garcia, Geovanni
    Zamudio Medina, Eira Anais
    Guerrero Martinez, Laura
    Leyva Castrejon, Oscar
    Moctezuma Ortiz, Jacqueline
    Nair, M. T. S.
    THIN SOLID FILMS, 2018, 645 : 305 - 311
  • [3] Enhancing photovoltaic performance of antimony sulfide-selenide tandem solar cells through selenium content variation: Modeling and simulation analysis
    Dahmardeh, Z.
    Saadat, M.
    Amiri, O.
    SOLAR ENERGY, 2023, 262
  • [4] All-chemically deposited solar cells with antimony Sulfide-Selenide/Lead sulfide thin film absorbers
    Messina, Sarah
    Nair, M. T. S.
    Nair, P. K.
    THIN-FILM COMPOUND SEMICONDUCTOR PHOTOVOLTAICS - 2007, 2007, 1012 : 413 - 418
  • [5] Carrier Transport Enhancement Mechanism in Highly Efficient Antimony Selenide Thin-Film Solar Cell
    Luo, Yandi
    Chen, Guojie
    Chen, Shuo
    Ahmad, Nafees
    Azam, Muhammad
    Zheng, Zhuanghao
    Su, Zhenghua
    Cathelinaud, Michel
    Ma, Hongli
    Chen, Zhigang
    Fan, Ping
    Zhang, Xianghua
    Liang, Guangxing
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (14)
  • [6] Development of antimony sulfide-selenide Sb2(S, Se)3-based solar cells
    Wang, Xiaomin
    Tang, Rongfeng
    Wu, Chunyan
    Zhu, Changfei
    Chen, Tao
    JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (03) : 713 - 721
  • [7] Back contact interfacial modification mechanism in highly-efficient antimony selenide thin-film solar cells
    Lin, Junhui
    Chen, Guojie
    Ahmad, Nafees
    Ishaq, Muhammad
    Chen, Shuo
    Su, Zhenghua
    Fan, Ping
    Zhang, Xianghua
    Zhang, Yi
    Liang, Guangxing
    JOURNAL OF ENERGY CHEMISTRY, 2023, 80 : 256 - 264
  • [8] Back contact interfacial modification mechanism in highly-efficient antimony selenide thin-film solar cells
    Junhui Lin
    Guojie Chen
    Nafees Ahmad
    Muhammad Ishaq
    Shuo Chen
    Zhenghua Su
    Ping Fan
    Xianghua Zhang
    Yi Zhang
    Guangxing Liang
    Journal of Energy Chemistry , 2023, (05) : 256 - 264
  • [9] Solar cells and prototype modules of variable bandgap antimony sulfide selenide thin films made by chemical deposition
    Bamola, Priyanka
    Garcia, Yareli Colin
    Sanchez, Jose Diego Gonzaga
    Salgado, Enue Barrios
    Nair, M. T. S.
    Nair, P. K.
    SOLAR ENERGY, 2025, 288
  • [10] Low-Cost Antimony Selenosulfide with Tunable Bandgap for Highly Efficient Solar Cells
    Dong, Jiabin
    Liu, Huizhen
    Cao, Zixiu
    Liu, Yue
    Bai, Yuxing
    Chen, Mohan
    Liu, Bei
    Wu, Li
    Luo, Jingshan
    Zhang, Yi
    Liu, Shengzhong
    SMALL, 2023, 19 (09)