THE BEHAVIOUR IN SHORT INTERVALS OF EXPONENTIAL SUMS OVER SIFTED INTEGERS

被引:2
|
作者
Maier, H. [1 ]
Sankaranarayanan, A. [2 ]
机构
[1] Univ Ulm, Inst Number Theory & Probabil Theory, D-89069 Ulm, Germany
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
NUMBER;
D O I
10.1215/ijm/1264170842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Hardy-Littlewood approach to the Twin prime problem, which uses a certain exponential sum over prime numbers. We propose a conjecture on the behaviour of the exponential sum in short intervals of the argument. We first show that this conjecture implies the Twin prime conjecture. We then prove that an analogous conjecture is true for exponential sums over integers without small prime factors.
引用
收藏
页码:111 / 133
页数:23
相关论文
共 50 条
  • [1] Exponential sums over primes in short intervals
    Jianya Liu
    Guangshi Lü
    Tao Zhan
    [J]. Science in China Series A, 2006, 49 : 611 - 619
  • [2] On exponential sums over primes in short intervals
    Lue, Guangshi
    Lao, Huixue
    [J]. MONATSHEFTE FUR MATHEMATIK, 2007, 151 (02): : 153 - 164
  • [3] Exponential sums over primes in short intervals
    Liu Jianya
    Lu Guangshi
    Zhan Tao
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (05): : 611 - 619
  • [4] On exponential sums over primes in short intervals
    Guangshi Lü
    Huixue Lao
    [J]. Monatshefte für Mathematik, 2007, 151 : 153 - 164
  • [5] Exponential sums over primes in short intervals
    LIU Jianya
    [J]. Science China Mathematics, 2006, (05) : 611 - 619
  • [6] Exponential sums over primes in short intervals
    Huang, Bingrong
    Wang, Zhiwei
    [J]. JOURNAL OF NUMBER THEORY, 2015, 148 : 204 - 219
  • [7] EXPONENTIAL-SUMS OVER PRIMES IN SHORT INTERVALS
    BALOG, A
    PERELLI, A
    [J]. ACTA MATHEMATICA HUNGARICA, 1986, 48 (1-2) : 223 - 228
  • [8] Estimation of Exponential Sums over Primes in Short Intervals I
    Jianya Liu
    Tao Zhan
    [J]. Monatshefte für Mathematik, 1999, 127 : 27 - 41
  • [9] Estimation of exponential sums over primes in short intervals I
    Liu, JY
    Zhan, T
    [J]. MONATSHEFTE FUR MATHEMATIK, 1999, 127 (01): : 27 - 41
  • [10] Exponential sums over cubes of primes in short intervals and its applications
    Taiyu Li
    Yanjun Yao
    [J]. Mathematische Zeitschrift, 2021, 299 : 83 - 99