Canopy chlorophyll content and LAI estimation from Sentinel-2: vegetation indices and Sentinel-2 Level-2A automatic products comparison

被引:0
|
作者
Pasqualotto, Nieves [1 ]
Bolognesi, Salvatore Falanga [2 ]
Belfiore, Oscar Rosario [2 ]
Delegido, Jesus [1 ]
D'Urso, Guido [3 ]
Moreno, Jose [1 ]
机构
[1] Univ Valencia, Image Proc Lab IPL, Valencia, Spain
[2] ARIESPACE Srl, Naples, Italy
[3] Univ Naples Federico II, Dept Agr Sci, Portici, Italy
基金
欧盟地平线“2020”;
关键词
LAI; canopy chlorophyll content; vegetation indices; Sentinel-2; validation; LEAF-AREA INDEX; SPECTRAL REFLECTANCE; RETRIEVAL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this work is to analyze different methodologies for the estimation of leaf area index (LAI) and canopy chlorophyll content (CCC), using the Sentinel-2 satellite. LAI and CCC are biophysical parameters indicator of crop health state and fundamental in the productivity prediction. The purpose is to define the most optimal LAI and CCC estimation method for operational use in the monitoring of agricultural areas. Moreover, the CCC and LAI automatic products obtained directly through the Sentinel Application Platform Software (SNAP) biophysical processor and Sentinel-2 images by means of an artificial neural network (ANN) are validated. On the other hand, common vegetation indices used to LAI and CCC retrieval are analyzed. Both methods were tested using a dataset composed of LM and CCC in situ data, obtained in an agricultural area near Caserta (Italy). As a result, Sentinel-2 automatic products present good statistics for LAI (R-2 = 0.86, RMSE = 0.80) and CCC (R-2 = 0.85, RMSE = 0.68 g/m(2)), without producing saturation at high LAI values. On the other hand, the best index for LAI retrieval was the normalized SeLI index (R-2 = 0.81, RMSE = 0.87) and for CCC, the three-band TCARI index (R-2 = 0.81, RMSE = 0.61 g/m(2)). But the SeLI index produces a saturation process with LAI values higher than 3.5. The main conclusion of this study, hence, is that Sentinel-2 Level 2A products, such as the LAI and CCC parameter, have great potential to be used automatically and operationally in agricultural studies, minimizing time and economic costs.
引用
收藏
页码:301 / 306
页数:6
相关论文
共 50 条
  • [31] Sentinel-2 and Sentinel-3 Intersensor Vegetation Estimation via Constrained Topic Modeling
    Fernandez-Beltran, Ruben
    Pla, Filiberto
    Plaza, Antonio
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (10) : 1531 - 1535
  • [32] Use of Sentinel-2 Derived Vegetation Indices for Estimating fPAR in Olive Groves
    Leolini, Luisa
    Moriondo, Marco
    Rossi, Riccardo
    Bellini, Edoardo
    Brilli, Lorenzo
    Lopez-Bernal, Alvaro
    Santos, Joao A.
    Fraga, Helder
    Bindi, Marco
    Dibari, Camilla
    Costafreda-Aumedes, Sergi
    AGRONOMY-BASEL, 2022, 12 (07):
  • [33] Assessing Leaf Biomass of Agave sisalana Using Sentinel-2 Vegetation Indices
    Vuorinne, Ilja
    Heiskanen, Janne
    Pellikka, Petri K. E.
    REMOTE SENSING, 2021, 13 (02) : 1 - 21
  • [34] Inversion of Rice Leaf Chlorophyll Content Based on Sentinel-2 Satellite Data
    Yang Xu
    Lu Xue-he
    Shi Jing-ming
    Li Jing
    Ju Wei-min
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42 (03) : 866 - 872
  • [35] LAI TIME SERIES RECONSTRUCTION FROM SENTINEL-2 IMAGERY USING VEGETATION GROWING PHENOLOGY FEATURE
    Peng, Naijie
    Yang, Siqi
    Tao, Yunzhu
    Zhai, Dechao
    Fan, Wenjie
    Liu, Qiang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3046 - 3049
  • [36] Bayesian object-based estimation of LAI and chlorophyll from a simulated Sentinel-2 top-of-atmosphere radiance image
    Laurent, Valerie C. E.
    Schaepman, Michael E.
    Verhoef, Wout
    Weyermann, Joerg
    Chavez, Roberto O.
    REMOTE SENSING OF ENVIRONMENT, 2014, 140 : 318 - 329
  • [37] Mapping vegetation in urban areas using Sentinel-2
    Mudele, Oladimeji
    Gamba, Paolo
    2019 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2019,
  • [38] CALIBRATION AND VALIDATION OF ALGORITHMS FOR THE ESTIMATION OF CHLOROPHYLL-A IN INLAND WATERS WITH SENTINEL-2
    Pereira-Sandoval, Marcela
    Ruiz-Verdu, Antonio
    Tenjo, Carolina
    Delegido, Jesus
    Urrego, Patricia
    Pena, Ramon
    Vicente, Eduardo
    Soria, Juan
    Soria, Javier
    Moreno, Jose
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9276 - 9279
  • [39] SPATIAL DROUGHT OCCURRENCE AND DISTRIBUTION USING DATA FROM SENTINEL-2 SATELLITE AND VEGETATION INDICES
    Plybour, Chaiphat
    Uttaruk, Yannawut
    Jeefoo, Phaisarn
    Laosuwan, Natcha
    Laosuwan, Teerawong
    GEOGRAPHIA TECHNICA, 2025, 20 (01): : 11 - 20
  • [40] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Mohammad Qasim
    Elmar Csaplovics
    Environmental Monitoring and Assessment, 2024, 196