Canopy chlorophyll content and LAI estimation from Sentinel-2: vegetation indices and Sentinel-2 Level-2A automatic products comparison

被引:0
|
作者
Pasqualotto, Nieves [1 ]
Bolognesi, Salvatore Falanga [2 ]
Belfiore, Oscar Rosario [2 ]
Delegido, Jesus [1 ]
D'Urso, Guido [3 ]
Moreno, Jose [1 ]
机构
[1] Univ Valencia, Image Proc Lab IPL, Valencia, Spain
[2] ARIESPACE Srl, Naples, Italy
[3] Univ Naples Federico II, Dept Agr Sci, Portici, Italy
基金
欧盟地平线“2020”;
关键词
LAI; canopy chlorophyll content; vegetation indices; Sentinel-2; validation; LEAF-AREA INDEX; SPECTRAL REFLECTANCE; RETRIEVAL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this work is to analyze different methodologies for the estimation of leaf area index (LAI) and canopy chlorophyll content (CCC), using the Sentinel-2 satellite. LAI and CCC are biophysical parameters indicator of crop health state and fundamental in the productivity prediction. The purpose is to define the most optimal LAI and CCC estimation method for operational use in the monitoring of agricultural areas. Moreover, the CCC and LAI automatic products obtained directly through the Sentinel Application Platform Software (SNAP) biophysical processor and Sentinel-2 images by means of an artificial neural network (ANN) are validated. On the other hand, common vegetation indices used to LAI and CCC retrieval are analyzed. Both methods were tested using a dataset composed of LM and CCC in situ data, obtained in an agricultural area near Caserta (Italy). As a result, Sentinel-2 automatic products present good statistics for LAI (R-2 = 0.86, RMSE = 0.80) and CCC (R-2 = 0.85, RMSE = 0.68 g/m(2)), without producing saturation at high LAI values. On the other hand, the best index for LAI retrieval was the normalized SeLI index (R-2 = 0.81, RMSE = 0.87) and for CCC, the three-band TCARI index (R-2 = 0.81, RMSE = 0.61 g/m(2)). But the SeLI index produces a saturation process with LAI values higher than 3.5. The main conclusion of this study, hence, is that Sentinel-2 Level 2A products, such as the LAI and CCC parameter, have great potential to be used automatically and operationally in agricultural studies, minimizing time and economic costs.
引用
收藏
页码:301 / 306
页数:6
相关论文
共 50 条
  • [21] Estimation of canopy nitrogen content in winter wheat from Sentinel-2 images for operational agricultural monitoring
    Christian Bossung
    Martin Schlerf
    Miriam Machwitz
    Precision Agriculture, 2022, 23 : 2229 - 2252
  • [22] Estimation of canopy nitrogen content in winter wheat from Sentinel-2 images for operational agricultural monitoring
    Bossung, Christian
    Schlerf, Martin
    Machwitz, Miriam
    PRECISION AGRICULTURE, 2022, 23 (06) : 2229 - 2252
  • [23] SENTINEL-2 LEVEL 1 PRODUCTS AND IMAGE PROCESSING PERFORMANCES
    Baillarin, S. J.
    Meygret, A.
    Dechoz, C.
    Petrucci, B.
    Lacherade, S.
    Tremas, T.
    Isola, C.
    Martimort, P.
    Spoto, F.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7003 - 7006
  • [24] SENTINEL-2 LEVEL 1 PRODUCTS AND IMAGE PROCESSING PERFORMANCES
    Baillarin, S. J.
    Meygret, A.
    Dechoz, C.
    Petrucci, B.
    Lacherade, S.
    Tremas, T.
    Isola, C.
    Martimort, P.
    Spoto, F.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION I, 2012, 39-B1 : 197 - 202
  • [25] A Hybrid Method of PROSAIL RTM for the Retrieval Canopy LAI and Chlorophyll Content of Moso Bamboo (Phyllostachys pubescens) Forests From Sentinel-2 MSI Data
    Xu, Zhanghua
    Zhang, Chaofei
    Xiang, Songyang
    Chen, Lingyan
    Yu, Xier
    Li, Haitao
    Li, Zenglu
    Guo, Xiaoyu
    Zhang, Huafeng
    Huang, Xuying
    Guan, Fengying
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 3125 - 3143
  • [26] Novel Vegetation Indices for Cotton Boll Opening Status Estimation Using Sentinel-2 Data
    Ren, Yu
    Meng, Yanhua
    Huang, Wenjiang
    Ye, Huichun
    Han, Yuxing
    Kong, Weiping
    Zhou, Xianfeng
    Cui, Bei
    Xing, Naichen
    Guo, Anting
    Geng, Yun
    REMOTE SENSING, 2020, 12 (11)
  • [27] Evaluation and cross-comparison of vegetation indices for crop monitoring from sentinel-2 and worldview-2 images
    Psomiadis, Emmanouil
    Dercas, Nicholas
    Dalezios, Nicolas R.
    Spyropoulos, Nikolaos V.
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XIX, 2017, 10421
  • [28] Comparing methods for mapping canopy chlorophyll content in a mixed mountain forest using Sentinel-2 data
    Ali, Abebe Mohammed
    Darvishzadeh, Roshanak
    Skidmore, Andrew
    Gara, Tawanda W.
    O'Connor, Brian
    Roeoesli, Claudia
    Heurich, Marco
    Paganini, Marc
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 87
  • [29] Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation
    Frampton, William James
    Dash, Jadunandan
    Watmough, Gary
    Milton, Edward James
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 82 : 83 - 92
  • [30] ENHANCING CHLOROPHYLL CONTENT ESTIMATION WITH SENTINEL-2 IMAGERY: A FUSION OF DEEP LEARNING AND BIOPHYSICAL MODELS
    Arano, K.
    Dutrieux, L.
    Sigut, L.
    Pavelka, M.
    Kowalska, N.
    Lhotakova, Z.
    Neuwirthova, E.
    Luke, P.
    Beck, P. S. A.
    Camino, C.
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 4486 - 4489