Circular Polarization Dynamics during Magnetic Polaron Formation in Type-II Magnetic Quantum Dots

被引:7
|
作者
Barman, Biplob [1 ]
Pientka, James M. [2 ]
Murphy, Joseph R. [3 ]
Cartwright, Alexander N. [4 ]
Chou, Wu-Ching [5 ]
Fan, Wen-Chung [5 ]
Oszwaldowski, Rafal [6 ]
Petrou, Athos [3 ]
机构
[1] Univ Michigan, Dept Comp Sci Engn & Phys, Flint, MI 48502 USA
[2] St Bonaventure Univ, Dept Phys, St Bonaventure, NY 14778 USA
[3] Univ Buffalo SUNY, Dept Phys, Buffalo, NY 14260 USA
[4] Univ Buffalo SUNY, Dept Elect & Elect Engn, Buffalo, NY 14260 USA
[5] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 300, Taiwan
[6] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2020年 / 124卷 / 23期
关键词
BAND;
D O I
10.1021/acs.jpcc.0c02723
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We used time-resolved photoluminescence spectroscopy to study the circular polarization dynamics of magnetic polarons in type-II (Zn,Mn)Te/ZnSe quantum dots in the presence of an external magnetic field. We investigated the time evolution of the peak energy of the sigma(+) and sigma(-) circularly polarized photoluminescence components and of the circular polarization of the emitted light. We also observed that the value of circular polarization, at long delay times, increases with magnetic field. We found that this system exhibits unexpected characteristics, such as different time scales for the formation of the magnetic polaron, on the one hand, and the evolution of photoluminescence circular polarization, on the other hand. These results are discussed within the framework of a theoretical model developed to describe the dependence of magnetic susceptibility as a function of temperature.
引用
收藏
页码:12766 / 12773
页数:8
相关论文
共 50 条
  • [21] Dynamics of nuclear polarization in InGaAs quantum dots in a transverse magnetic field
    S. Yu. Verbin
    I. Ya. Gerlovin
    I. V. Ignatiev
    M. S. Kuznetsova
    R. V. Cherbunin
    K. Flisinski
    D. R. Yakovlev
    M. Bayer
    Journal of Experimental and Theoretical Physics, 2012, 114 : 681 - 690
  • [22] Dynamics of nuclear polarization in InGaAs quantum dots in a transverse magnetic field
    Verbin, S. Yu.
    Gerlovin, I. Ya.
    Ignatiev, I. V.
    Kuznetsova, M. S.
    Cherbunin, R. V.
    Flisinski, K.
    Yakovlev, D. R.
    Bayer, M.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2012, 114 (04) : 681 - 690
  • [23] Type-II Ge/Si quantum dots
    Dvurechenskii, AV
    Yakimov, AI
    SEMICONDUCTORS, 2001, 35 (09) : 1095 - 1105
  • [24] Dynamics and thermal instability of magnetic flux in type-II superconductors
    Shapiro, BY
    Shapiro, I
    Rosenstein, B
    Bass, F
    PHYSICAL REVIEW B, 2005, 71 (18)
  • [25] Type-II Ge/Si quantum dots
    A. V. Dvurechenskii
    A. I. Yakimov
    Semiconductors, 2001, 35 : 1095 - 1105
  • [26] OBSERVATION OF POLARON DYNAMICS IN MAGNETIC QUANTUM-WELLS
    AWSCHALOM, DD
    FREEMAN, MR
    SAMARTH, N
    LUO, H
    FURDYNA, JK
    PHYSICAL REVIEW LETTERS, 1991, 66 (09) : 1212 - 1215
  • [27] Recombination Dynamics of the Enhanced Quantum Efficiency in CdSe/ZnTe/ZnS Type-II Quantum Dots
    Wang, Chun-Hsiung
    Wei, Chih-Ming
    Huang, Sheng-Chih
    Chen, Yang-Fang
    Lai, Chih-Wei
    Ho, Mei-Lin
    Chou, Pi-Tai
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2010, 57 (3B) : 534 - 538
  • [28] Formation of nanoscale magnetic field by nuclear spin polarization in individual quantum dots
    Sasakura, H.
    Adachi, S.
    Kaji, R.
    Muto, S.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, NO 4, 2009, 6 (04): : 837 - +
  • [29] Magnetic field insensitive photoluminescence decay of ZnSe/CdS core/shell type-II colloidal quantum dots
    Lee, Woojin
    Park, Seongho
    Murayama, Akihiro
    Lee, Jong-soo
    Kyhm, Kwangseuk
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (06)
  • [30] Type-II ZnTe/ZnSe quantum dots and quantum wells
    Najjar, Rita
    Andre, Regis
    Besombes, Lucien
    Bougerol, Catherine
    Tatarenko, Serge
    Mariette, Henri
    SUPERLATTICES AND MICROSTRUCTURES, 2009, 46 (1-2) : 253 - 257