A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors

被引:2
|
作者
Zhang, Jilin [1 ,2 ,3 ,4 ,5 ]
Tu, Hangdi [1 ,2 ]
Ren, Yongjian [1 ,2 ]
Wan, Jian [1 ,2 ,4 ,5 ]
Zhou, Li [1 ,2 ]
Li, Mingwei [1 ,2 ]
Wang, Jue [6 ]
Yu, Lifeng [7 ,8 ]
Zhao, Chang [1 ,2 ]
Zhang, Lei [9 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Zhejiang, Peoples R China
[2] Minist Educ, Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Zhejiang, Peoples R China
[3] Zhejiang Univ, Coll Elect Engn, Hangzhou 310058, Zhejiang, Peoples R China
[4] Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Zhejiang, Peoples R China
[5] Zhejiang Prov Engn Ctr Media Data Cloud Proc & An, Hangzhou 310018, Zhejiang, Peoples R China
[6] Chinese Acad Sci, Supercomp Ctr Comp Network Informat Ctr, Beijing 100190, Peoples R China
[7] Hithink RoyalFlush Informat Network Co Ltd, Hangzhou 310023, Zhejiang, Peoples R China
[8] Financial Informat Engn Technol Res Ctr Zhejiang, Hangzhou 310023, Zhejiang, Peoples R China
[9] Beijing Univ Civil Engn & Architecture, Dept Comp Sci, Beijing 100044, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
disturbed machine learning; sensors; dynamic synchronous parallel strategy (DSP); parameter server (PS); FRAMEWORK;
D O I
10.3390/s17102172
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Communication Optimization Algorithms for Distributed Deep Learning Systems: A Survey
    Yu, Enda
    Dong, Dezun
    Liao, Xiangke
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (12) : 3294 - 3308
  • [42] Edge-Based Communication Optimization for Distributed Federated Learning
    Wang, Tian
    Liu, Yan
    Zheng, Xi
    Dai, Hong-Ning
    Jia, Weijia
    Xie, Mande
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (04): : 2015 - 2024
  • [43] Communication-efficient Distributed Learning for Large Batch Optimization
    Liu, Rui
    Mozafari, Barzan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [44] Hydrogel Pressure Distribution Sensors Based on an Imaging Strategy and Machine Learning
    Liu, Zhengxin
    Zhang, Tingwei
    Yang, Mei
    Gao, Weizheng
    Wu, Songjie
    Wang, Kaile
    Dong, Feihong
    Dang, Jie
    Zhou, Diange
    Zhang, Jue
    [J]. ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (08) : 3599 - 3609
  • [45] OSP: Overlapping Computation and Communication in Parameter Server for Fast Machine Learning
    Wang, Haozhao
    Guo, Song
    Li, Ruixuan
    [J]. PROCEEDINGS OF THE 48TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP 2019), 2019,
  • [47] Survey on Parallel and Distributed Optimization Algorithms for Scalable Machine Learning
    Kang L.-Y.
    Wang J.-F.
    Liu J.
    Ye D.
    [J]. Ruan Jian Xue Bao/Journal of Software, 2018, 29 (01): : 109 - 130
  • [48] Evaluation and Optimization of Distributed Machine Learning Techniques for Internet of Things
    Gao, Yansong
    Kim, Minki
    Thapa, Chandra
    Abuadbba, Alsharif
    Zhang, Zhi
    Camtepe, Seyit
    Kim, Hyoungshick
    Nepal, Surya
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2538 - 2552
  • [49] Distributed quadratic optimization with terminal consensus iterative learning strategy
    Luo, Zijian
    Xiong, Wenjun
    Huang, Tingwen
    Duan, Jiang
    [J]. NEUROCOMPUTING, 2023, 528 : 12 - 19
  • [50] A Distributed Coverage Optimization and Connectivity Maintenance Strategy based on Unknown Sensors in WSAN
    Guo, Yu
    Zhang, Yun
    Mi, Zhenqiang
    Yang, Yang
    Obaidat, Mohammad S.
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (CITS), 2016, : 241 - 245