A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors

被引:2
|
作者
Zhang, Jilin [1 ,2 ,3 ,4 ,5 ]
Tu, Hangdi [1 ,2 ]
Ren, Yongjian [1 ,2 ]
Wan, Jian [1 ,2 ,4 ,5 ]
Zhou, Li [1 ,2 ]
Li, Mingwei [1 ,2 ]
Wang, Jue [6 ]
Yu, Lifeng [7 ,8 ]
Zhao, Chang [1 ,2 ]
Zhang, Lei [9 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Zhejiang, Peoples R China
[2] Minist Educ, Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Zhejiang, Peoples R China
[3] Zhejiang Univ, Coll Elect Engn, Hangzhou 310058, Zhejiang, Peoples R China
[4] Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Zhejiang, Peoples R China
[5] Zhejiang Prov Engn Ctr Media Data Cloud Proc & An, Hangzhou 310018, Zhejiang, Peoples R China
[6] Chinese Acad Sci, Supercomp Ctr Comp Network Informat Ctr, Beijing 100190, Peoples R China
[7] Hithink RoyalFlush Informat Network Co Ltd, Hangzhou 310023, Zhejiang, Peoples R China
[8] Financial Informat Engn Technol Res Ctr Zhejiang, Hangzhou 310023, Zhejiang, Peoples R China
[9] Beijing Univ Civil Engn & Architecture, Dept Comp Sci, Beijing 100044, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
disturbed machine learning; sensors; dynamic synchronous parallel strategy (DSP); parameter server (PS); FRAMEWORK;
D O I
10.3390/s17102172
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Optimal Data Splitting in Distributed Optimization for Machine Learning
    Medyakov, D.
    Molodtsov, G.
    Beznosikov, A.
    Gasnikov, A.
    [J]. DOKLADY MATHEMATICS, 2023, 108 (SUPPL 2) : S465 - S475
  • [22] Distributed Parameter Optimization Scheduling Strategy and System Design Based on Mesos
    Li, Shuo
    Lu, Zhonghua
    Sun, Yongze
    Deng, Sungen
    Niu, Beifang
    [J]. 2019 IEEE 5TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY) / IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING (HPSC) / IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2019, : 218 - 224
  • [23] Editorial: Introduction to the Issue on Distributed Machine Learning for Wireless Communication
    Yang, Ping
    Dobre, Octavia A.
    Xiao, Ming
    Di Renzo, Marco
    Li, Jun
    Quek, Tony Q. S.
    Han, Zhu
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (03) : 320 - 325
  • [24] Communication-Efficient Quantum Algorithm for Distributed Machine Learning
    Tang, Hao
    Li, Boning
    Wang, Guoqing
    Xu, Haowei
    Li, Changhao
    Barr, Ariel
    Cappellaro, Paola
    Li, Ju
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (15)
  • [25] GADMM: Fast and Communication Efficient Framework for Distributed Machine Learning
    Elgabli, Anis
    Park, Jihong
    Bedi, Amrit S.
    Bennis, Mehdi
    Aggarwal, Vaneet
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [26] GADMM: Fast and Communication Efficient Framework for Distributed Machine Learning
    Elgabli, Anis
    Park, Jihong
    Bedi, Amrit S.
    Bennis, Mehdi
    Aggarwal, Vaneet
    [J]. Journal of Machine Learning Research, 2020, 21
  • [27] Machine Learning Techniques for Optical Communication System Optimization
    Zibar, Darko
    Wass, Jesper
    Thrane, Jakob
    Piels, Molly
    [J]. 2017 19TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2017,
  • [28] A Free Stale Synchronous Parallel Strategy for Distributed Machine Learning
    Shi, Hang
    Zhao, Yue
    Zhang, Bofeng
    Yoshigoe, Kenji
    Vasilakos, Athanasios V.
    [J]. BDE 2019: 2019 INTERNATIONAL CONFERENCE ON BIG DATA ENGINEERING, 2019, : 17 - 23
  • [29] Machine Learning Strategy for Solar Energy optimisation in Distributed systems
    Rubavathy, S. Jaanaa
    Kannan, Nithiyananthan
    Dhanya, D.
    Shinde, Santaji Krishna
    Soni, N. B.
    Madduri, Abhishek
    Mohanavel, V.
    Sudhakar, M.
    Sathyamurthy, Ravishankar
    [J]. ENERGY REPORTS, 2022, 8 : 872 - 881
  • [30] Optimization of ticket purchasing strategy based on machine learning
    Li, Yuling
    Zhu, Ping
    Qin, Sujuan
    [J]. 2017 IEEE 3RD INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC), 2017, : 1230 - 1234