A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors

被引:2
|
作者
Zhang, Jilin [1 ,2 ,3 ,4 ,5 ]
Tu, Hangdi [1 ,2 ]
Ren, Yongjian [1 ,2 ]
Wan, Jian [1 ,2 ,4 ,5 ]
Zhou, Li [1 ,2 ]
Li, Mingwei [1 ,2 ]
Wang, Jue [6 ]
Yu, Lifeng [7 ,8 ]
Zhao, Chang [1 ,2 ]
Zhang, Lei [9 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Zhejiang, Peoples R China
[2] Minist Educ, Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Zhejiang, Peoples R China
[3] Zhejiang Univ, Coll Elect Engn, Hangzhou 310058, Zhejiang, Peoples R China
[4] Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Zhejiang, Peoples R China
[5] Zhejiang Prov Engn Ctr Media Data Cloud Proc & An, Hangzhou 310018, Zhejiang, Peoples R China
[6] Chinese Acad Sci, Supercomp Ctr Comp Network Informat Ctr, Beijing 100190, Peoples R China
[7] Hithink RoyalFlush Informat Network Co Ltd, Hangzhou 310023, Zhejiang, Peoples R China
[8] Financial Informat Engn Technol Res Ctr Zhejiang, Hangzhou 310023, Zhejiang, Peoples R China
[9] Beijing Univ Civil Engn & Architecture, Dept Comp Sci, Beijing 100044, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
disturbed machine learning; sensors; dynamic synchronous parallel strategy (DSP); parameter server (PS); FRAMEWORK;
D O I
10.3390/s17102172
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Communication Efficient Distributed Machine Learning with the Parameter Server
    Li, Mu
    Andersen, David G.
    Smola, Alexander
    Yu, Kai
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [2] ElastiQuant: Elastic Quantization Strategy for Communication Efficient Distributed Machine Learning in IoT
    Sudharsan, Bharath
    Breslin, John G.
    Ali, Muhammad Intizar
    Corcoran, Peter
    Ranjan, Rajiv
    [J]. 37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 246 - 254
  • [3] A Machine Learning Strategy for Locomotion Classification and Parameter Estimation Using Fusion of Wearable Sensors
    Camargo, Jonathan
    Flanagan, Will
    Csomay-Shanklin, Noel
    Kanwar, Bharat
    Young, Aaron
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (05) : 1569 - 1578
  • [4] Machine Learning based parameter tuning strategy for MMC based topology optimization
    Jiang, Xinchao
    Wang, Hu
    Li, Yu
    Mo, Kangjia
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2020, 149 (149)
  • [5] Distributed machine learning, optimization and applications
    Liu, Qingshan
    Zeng, Zhigang
    Jin, Yaochu
    [J]. NEUROCOMPUTING, 2022, 489 : 486 - 487
  • [6] Security and Privacy for Distributed Optimization & Distributed Machine Learning
    Vaidya, Nitin H.
    [J]. PROCEEDINGS OF THE 2021 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '21), 2021, : 573 - 573
  • [7] Adaptive synchronous strategy for distributed machine learning
    Tan, Miaoquan
    Liu, Wai-Xi
    Luo, Junming
    Chen, Haosen
    Guo, Zhen-Zheng
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 11713 - 11741
  • [8] Optimization of the deployment of sensors in distributed-parameter control systems
    Sineglazov, V.M.
    [J]. Soviet journal of automation and information sciences, 1988, 21 (06): : 75 - 78
  • [9] Optimization of sensors' allocation strategies for parameter estimation in distributed systems
    Ucinski, Dariusz
    [J]. 2000, Gordon & Breach Science Publ Inc, Newark, NJ, United States (37):
  • [10] Parallelizing Machine Learning Optimization Algorithms on Distributed Data-Parallel Platforms with Parameter Server
    Gu, Rong
    Fan, Shiqing
    Hu, Qiu
    Yuan, Chunfeng
    Huang, Yihua
    [J]. 2018 IEEE 24TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS 2018), 2018, : 126 - 133