The geometrical problem of electrical impedance tomography in the disk

被引:0
|
作者
Sharafutdinov, V. A. [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
electrical impedance tomography; Dirichlet-to-Neumann operator; conformal map; BOUNDARY; MANIFOLDS;
D O I
10.1134/S0037446606010198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The geometrical problem of electrical impedance tomography consists of recovering a Riemannian metric on a compact manifold with boundary from the Dirichlet-to-Neumann operator (DNoperator) given on the boundary. We present a new elementary proof of the uniqueness theorem: A Riemannian metric on the two-dimensional disk is determined by its DN-operator uniquely up to a conformal equivalence. We also prove an existence theorem that describes all operators on the circle that are DN-operators of Riemannian metrics on the disk.
引用
收藏
页码:178 / 190
页数:13
相关论文
共 50 条
  • [31] NUMERICAL ALGORITHM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY PROBLEM USING PSEUDOANALYTIC APPROACH
    Robles-Gonzalez, M.
    Ponomaryov, V.
    Ramirez-Tachiquin, M.
    Bucio-Ramirez, A.
    2013 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES (MSMW), 2013, : 629 - 631
  • [32] Using Topological Algorithms to Solve Inverse Problem in Electrical Impedance Tomography
    Tchorzewski, Pawel
    Rymarczyk, Tomasz
    Sikora, Jan
    INTERNATIONAL INTERDISCIPLINARY PHD WORKSHOP 2016, 2016, : 46 - 50
  • [33] STABILITY AND RESOLUTION ANALYSIS OF A LINEARIZED PROBLEM IN ELECTRICAL-IMPEDANCE TOMOGRAPHY
    ALLERS, A
    SANTOSA, F
    INVERSE PROBLEMS, 1991, 7 (04) : 515 - 533
  • [34] Algorithm for solving the Electrical Impedance Tomography forward problem by the modification method
    Sushko, I. O.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2011, (47): : 165 - 175
  • [35] A pre-iteration method for the inverse problem in electrical impedance tomography
    Wang, HX
    Wang, C
    Yin, WL
    IMTC/O3: PROCEEDINGS OF THE 20TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1 AND 2, 2003, : 392 - 395
  • [36] Electrical Impedance Tomography problem with inaccurately known boundary and contact impedances
    Kolehmainen, Ville
    Lassas, Matti
    Ola, Petri
    2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 1124 - +
  • [37] The boundary element method in the forward and inverse problem of electrical impedance tomography
    de Munck, JC
    Faes, TJC
    Heethaar, RM
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (06) : 792 - 800
  • [38] A pre-iteration method for the inverse problem in electrical impedance tomography
    Wang, HX
    Wang, C
    Yin, WL
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2004, 53 (04) : 1093 - 1096
  • [39] Electrical impedance tomography problem with inaccurately known boundary and contact impedances
    Kolehmainen, Ville
    Lassas, Matti
    Ola, Petri
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (10) : 1404 - 1414
  • [40] Numerical Resolution of the Electrical Impedance Tomography Inverse Problem with Fixed Inclusions
    Velasco, Arrianne Crystal
    Darbas, Marion
    Mendoza, Renier
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (03): : 1063 - 1076