The geometrical problem of electrical impedance tomography in the disk

被引:0
|
作者
Sharafutdinov, V. A. [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
electrical impedance tomography; Dirichlet-to-Neumann operator; conformal map; BOUNDARY; MANIFOLDS;
D O I
10.1134/S0037446606010198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The geometrical problem of electrical impedance tomography consists of recovering a Riemannian metric on a compact manifold with boundary from the Dirichlet-to-Neumann operator (DNoperator) given on the boundary. We present a new elementary proof of the uniqueness theorem: A Riemannian metric on the two-dimensional disk is determined by its DN-operator uniquely up to a conformal equivalence. We also prove an existence theorem that describes all operators on the circle that are DN-operators of Riemannian metrics on the disk.
引用
收藏
页码:178 / 190
页数:13
相关论文
共 50 条