Infrared signatures of the peptide dynamical transition: A molecular dynamics simulation study

被引:11
|
作者
Kobus, Maja [1 ]
Nguyen, Phuong H. [2 ]
Stock, Gerhard [1 ]
机构
[1] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
[2] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, D-60438 Frankfurt, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2010年 / 133卷 / 03期
关键词
PROTEIN DYNAMICS; ENERGY-TRANSPORT; GLASS-TRANSITION; SPECTROSCOPY; TEMPERATURE; MODEL; FLUCTUATIONS; FLEXIBILITY; SPECTRA; HELICES;
D O I
10.1063/1.3462961
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent two-dimensional infrared (2D-IR) experiments on a short peptide 3(10)-helix in chloroform solvent [E. H. G. Backus et al., J. Phys. Chem. B 113, 13405 (2009)] revealed an intriguing temperature dependence of the homogeneous line width, which was interpreted in terms of a dynamical transition of the peptide. To explain these findings, extensive molecular dynamics simulations at various temperatures were performed in order to construct the free energy landscape of the system. The study recovers the familiar picture of a glass-forming system, which below the glass transition temperature T-g is trapped in various energy basins, while it diffuses freely between these basins above Tg. In fact, one finds at T-g approximate to 270 K a sharp rise of the fluctuations of the backbone dihedral angles, which reflects conformational transitions of the peptide. The corresponding C=O frequency fluctuations are found to be a sensitive probe of the peptide conformational dynamics from femtosecond to nanosecond time scales and lead to 2D-IR spectra that qualitatively match the experiment. The calculated homogeneous line width, however, does not show the biphasic temperature dependence observed in experiment. (C) 2010 American Institute of Physics. [doi:10.1063/1.3462961]
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Peptide and peptidomimetic design using molecular dynamics simulation
    Voelz, Vincent A.
    Dill, Ken A.
    Chorny, Ilya
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [42] Molecular dynamics simulation of a lipidated Ras peptide in membranes
    Feller, SE
    Vogel, A
    Waldmann, H
    Arnold, Y
    Huster, D
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 422A - 422A
  • [43] Molecular dynamics simulation of amyloid peptide nucleation and aggregation
    Liu, Pu
    Voth, Gregory A.
    BIOPHYSICAL JOURNAL, 2007, : 195A - 195A
  • [44] Molecular dynamics simulation of the structural and dynamical properties of crystalline BaO
    Mota, RC
    Costa, SC
    Pizani, PS
    Rino, JP
    PHYSICAL REVIEW B, 2005, 71 (22)
  • [45] Molecular dynamics simulation study
    Michel, A.
    Göritz, D.
    Kreitmeier, S.
    KGK-Kautschuk und Gummi Kunststoffe, 2002, 55 (09): : 447 - 453
  • [46] Reversible peptide folding in solution by molecular dynamics simulation
    Daura, X
    Jaun, B
    Seebach, D
    van Gunsteren, WF
    Mark, AE
    JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (05) : 925 - 932
  • [47] Effects of an Electric Field on the Conformational Transition of the Protein: A Molecular Dynamics Simulation Study
    Jiang, Zhouting
    You, Le
    Dou, Wenhui
    Sun, Tingting
    Xu, Peng
    POLYMERS, 2019, 11 (02)
  • [48] MOLECULAR-DYNAMICS SIMULATION OF LIQUID-SOLID TRANSITION - DYNAMICAL PROPERTIES OF LIQUID-SOLID INTERFACE
    BORSTNIK, B
    AZMAN, A
    CHEMICAL PHYSICS LETTERS, 1975, 32 (01) : 153 - 154
  • [49] Study on effect of nanoparticles on boiling phase transition by using molecular dynamics simulation
    Qin, Yangjun
    Zhao, Jin
    Tang, Zhuolin
    Wang, Yanbiao
    AIP ADVANCES, 2022, 12 (02)
  • [50] Machine learning molecular dynamics for the simulation of infrared spectra
    Gastegger, Michael
    Behler, Joerg
    Marquetand, Philipp
    CHEMICAL SCIENCE, 2017, 8 (10) : 6924 - 6935